|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBOOKCENTRAL_ocn760992359 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
110331s2011 flua fo 000 0 eng d |
040 |
|
|
|a CDX
|b eng
|e pn
|c CDX
|d OCLCQ
|d OCLCF
|d OCLCO
|d OCLCQ
|d EBLCP
|d OCLCQ
|d MERUC
|d OCLCQ
|d K6U
|d OCLCO
|d SGP
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 899156737
|
020 |
|
|
|a 1439835527
|q (hardcover)
|
020 |
|
|
|a 9781439835524
|q (hardcover)
|
024 |
8 |
|
|a 9786613311610
|
029 |
1 |
|
|a AU@
|b 000055777429
|
035 |
|
|
|a (OCoLC)760992359
|z (OCoLC)899156737
|
037 |
|
|
|a 331161
|b MIL
|
050 |
|
4 |
|a ML74
|
082 |
0 |
4 |
|a 780.285/6312
|2 22
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Music data mining /
|c edited by Tao Li, Mitsunori Ogihara, George Tzanetakis.
|
260 |
|
|
|a Boca Raton, Fla. :
|b Taylor & Francis,
|c 2011.
|
300 |
|
|
|a 1 online resource (384 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Chapman & Hall/CRC data mining and knowledge discovery series ;
|v 21
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Contents; List of Figures; List of Tables; Preface; List of Contributors; I. Fundamental Topics; 1. Music Data Mining: An Introduction; 2. Audio Feature Extraction; II. Classification; 3. Auditory Sparse Coding; 4. Instrument Recognition; 5. Mood and Emotional Classification; 6. Zipf's Law, Power Laws, and Music Aesthetics; III. Social Aspects of Music Data Mining; 7. Web-Based and Community-Based Music Information Extraction; 8. Indexing Music with Tags; 9. Human Computation for Music Classification; IV. Advanced Topics; 10. Hit Song Science
|
520 |
|
|
|a The research area of music information retrieval has gradually evolved to address the challenges of effectively accessing and interacting large collections of music and associated data, such as styles, artists, lyrics, and reviews. Bringing together an interdisciplinary array of top researchers, Music Data Mining presents a variety of approaches to successfully employ data mining techniques for the purpose of music processing.The book first covers music data mining tasks and algorithms and audio feature extraction, providing a framework for subsequent chapters. With a focus on data classificat.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Music
|x Data processing.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
2 |
|a Data Mining
|
650 |
|
6 |
|a Musique
|x Informatique.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Music
|x Data processing
|2 fast
|
700 |
1 |
|
|a Li, Tao.
|
700 |
1 |
|
|a Ogihara, Mitsunori,
|d 1963-
|1 https://id.oclc.org/worldcat/entity/E39PCjCjtXmWG8XKx6GjDMy7h3
|
700 |
1 |
|
|a Tzanetakis, George,
|d 1975-
|1 https://id.oclc.org/worldcat/entity/E39PCjF3RJpWRw4QWfyjytx7HC
|
758 |
|
|
|i has work:
|a Music data mining (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFvmyB7HbBJqRBjDvvJvH3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9786613311610
|
830 |
|
0 |
|a Chapman & Hall/CRC data mining and knowledge discovery series ;
|v 21.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1633711
|z Texto completo
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 19873005
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1633711
|
994 |
|
|
|a 92
|b IZTAP
|