Cargando…

Optimization for machine learning /

An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sra, Suvrit, 1976-, Nowozin, Sebastian, 1980-, Wright, Stephen J., 1960-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, [2012]
Colección:Neural information processing series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn758384972
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 111024t20122012maua ob 000 0 eng d
010 |z  2011002059 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d E7B  |d COO  |d CDX  |d COD  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d JSTOR  |d NLGGC  |d OCLCF  |d IDEBK  |d OCLCQ  |d EBLCP  |d OCLCQ  |d AZK  |d LOA  |d GZM  |d AGLDB  |d OCLCQ  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d IOG  |d WY@  |d U3W  |d EZ9  |d STF  |d WRM  |d VTS  |d ICG  |d INT  |d TOF  |d NRAMU  |d VT2  |d AU@  |d OCLCQ  |d MITPR  |d WYU  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d UKCRE  |d MM9  |d OCLCA  |d OCLCO  |d OCLCQ  |d IOY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
016 7 |a 015874087  |2 Uk 
019 |a 766417417  |a 778616598  |a 816867514  |a 961619660  |a 962692133  |a 966255483  |a 988408134  |a 992030970  |a 995029221  |a 1037932629  |a 1038696068  |a 1045523529  |a 1058175671  |a 1062970938  |a 1066406052  |a 1081226157  |a 1153557168 
020 |a 9780262298773  |q (electronic bk.) 
020 |a 0262298775  |q (electronic bk.) 
020 |a 1283302845 
020 |a 9781283302845 
020 |z 9780262016469 
020 |z 026201646X 
024 8 |a 9786613302847 
024 8 |a 99952600993 
029 1 |a AU@  |b 000049145883 
029 1 |a DEBBG  |b BV040887777 
029 1 |a DEBBG  |b BV044186866 
029 1 |a DEBSZ  |b 372823289 
029 1 |a DEBSZ  |b 456337091 
029 1 |a NZ1  |b 14230110 
029 1 |a AU@  |b 000066759126 
035 |a (OCoLC)758384972  |z (OCoLC)766417417  |z (OCoLC)778616598  |z (OCoLC)816867514  |z (OCoLC)961619660  |z (OCoLC)962692133  |z (OCoLC)966255483  |z (OCoLC)988408134  |z (OCoLC)992030970  |z (OCoLC)995029221  |z (OCoLC)1037932629  |z (OCoLC)1038696068  |z (OCoLC)1045523529  |z (OCoLC)1058175671  |z (OCoLC)1062970938  |z (OCoLC)1066406052  |z (OCoLC)1081226157  |z (OCoLC)1153557168 
037 |a 330284  |b MIL 
037 |a 22573/ctt59nqb5  |b JSTOR 
037 |a 8996  |b MIT Press 
037 |a 9780262298773  |b MIT Press 
050 4 |a Q325.5  |b .O65 2012eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
072 7 |a COM037000  |2 bisacsh 
072 7 |a TEC037000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 22 
049 |a UAMI 
245 0 0 |a Optimization for machine learning /  |c edited by Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. 
264 1 |a Cambridge, Mass. :  |b MIT Press,  |c [2012] 
264 4 |c ©2012 
300 |a 1 online resource (ix, 494 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
380 |a Bibliography 
490 1 |a Neural information processing series 
504 |a Includes bibliographical references. 
505 0 |a Introduction : Optimization and machine learning / S. Sra, S. Nowozin, and S.J. Wright -- Convex optimization with sparsity-inducing norms / F. Bach, R. Jenatton, J. Mairal, and G. Obozinski -- Interior-point methods for large-scale cone programming / M. Andersen, J. Dahl, Z. Liu, and L. Vanderberghe -- Incremental gradient, subgradient, and proximal methods for convex optimization : a survey / D.P. Bertsekas -- First-order methods for nonsmooth convex large-scale optimization, I : general purpose methods / A. Juditsky and A. Nemirovski -- First-order methods for nonsmooth convex large-scale optimization, II : utilizing problem's structure / A. Juditsky and A. Nemirovski -- Cutting-plane methods in machine learning / V. Franc, S. Sonnenburg, and T. Werner -- Introduction to dual decomposition for inference / D. Sontag, A. Globerson, and T. Jaakkola -- Augmented Lagrangian methods for learning, selecting, and combining features / R. Tomioka, T. Suzuki, and M. Sugiyama -- The convex optimization approach to regret minimization / E. Hazan -- Projected Newton-type methods in machine learning / M. Schmidt, D. Kim, and S. Sra -- Interior-point methods in machine learning / J. Gondzio -- The tradeoffs of large-scale learning / L. Bottou and O. Bousquet -- Robust optimization in machine learning / C. Caramanis, S. Mannor, and H. Xu -- Improving first and second-order methods by modeling uncertainty / N. Le Roux, Y. Bengio, and A. Fitzgibbon -- Bandit view on noisy optimization / J.-Y. Audibert, S. Bubeck, and R. Munos -- Optimization methods for sparse inverse covariance selection / K. Scheinberg and S. Ma -- A pathwise algorithm for covariance selection / V. Krishnamurthy, S.D. Ahipasaoglu, and A. d'Aspremont. 
588 0 |a Print version record. 
520 |a An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Machine learning  |x Mathematical models. 
650 0 |a Mathematical optimization. 
650 6 |a Apprentissage automatique  |x Modèles mathématiques. 
650 6 |a Optimisation mathématique. 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a Machine learning  |x Mathematical models  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
653 |a COMPUTER SCIENCE/Machine Learning & Neural Networks 
653 |a COMPUTER SCIENCE/Artificial Intelligence 
700 1 |a Sra, Suvrit,  |d 1976- 
700 1 |a Nowozin, Sebastian,  |d 1980- 
700 1 |a Wright, Stephen J.,  |d 1960- 
758 |i has work:  |a Optimization for machine learning (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFFBBMytvQHBTPvFTJVq6X  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Optimization for machine learning.  |d Cambridge, Mass. : MIT Press, ©2012  |z 9780262016469  |w (DLC) 2011002059  |w (OCoLC)701493361 
830 0 |a Neural information processing series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3339310  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 19728687 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3339310 
938 |a ebrary  |b EBRY  |n ebr10504740 
938 |a EBSCOhost  |b EBSC  |n 399078 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 330284 
938 |a YBP Library Services  |b YANK  |n 5959232 
994 |a 92  |b IZTAP