Cargando…

Partial differential equations : a unified Hilbert space approach /

This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space se...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Picard, R. H. (Rainer H.)
Otros Autores: McGhee, D. F.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : De Gruyter, ©2011.
Colección:De Gruyter expositions in mathematics ; 55.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn753970239
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 110921s2011 gw ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d CDX  |d IDEBK  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d NLGGC  |d DEBBG  |d EBLCP  |d MERUC  |d CN3GA  |d OCLCF  |d OCLCQ  |d S3O  |d COO  |d OCLCQ  |d AZK  |d LOA  |d COCUF  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d DEGRU  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VLY  |d AJS  |d OCLCQ  |d OCLCO  |d AAA  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
016 7 |a 015848897  |2 Uk 
019 |a 743693614  |a 747413854  |a 816881812  |a 961499457  |a 962611017  |a 1058067646  |a 1162379587 
020 |a 9783110250275  |q (electronic bk.) 
020 |a 3110250276  |q (electronic bk.) 
020 |z 9783110250268 
020 |z 3110250268 
020 |a 1283399938 
020 |a 9781283399937 
020 |a 9786613399939 
020 |a 6613399930 
024 7 |a 10.1515/9783110250275  |2 doi 
029 1 |a AU@  |b 000051587468 
029 1 |a DEBBG  |b BV042348141 
029 1 |a DEBBG  |b BV043123765 
029 1 |a DEBBG  |b BV044156508 
029 1 |a DEBSZ  |b 372700926 
029 1 |a DEBSZ  |b 397100639 
029 1 |a DEBSZ  |b 421562021 
029 1 |a DEBSZ  |b 431017069 
029 1 |a DEBSZ  |b 478280939 
029 1 |a GBVCP  |b 803645325 
035 |a (OCoLC)753970239  |z (OCoLC)743693614  |z (OCoLC)747413854  |z (OCoLC)816881812  |z (OCoLC)961499457  |z (OCoLC)962611017  |z (OCoLC)1058067646  |z (OCoLC)1162379587 
050 4 |a QA322.4  |b .P53 2011eb 
072 7 |a MAT  |x 031000  |2 bisacsh 
082 0 4 |a 515/.733  |2 22 
049 |a UAMI 
100 1 |a Picard, R. H.  |q (Rainer H.)  |1 https://id.oclc.org/worldcat/entity/E39PBJv8CcvvrxxHJvhkX9WhpP 
245 1 0 |a Partial differential equations :  |b a unified Hilbert space approach /  |c Rainer Picard, Des McGhee. 
260 |a Berlin ;  |a New York :  |b De Gruyter,  |c ©2011. 
300 |a 1 online resource (xviii, 469 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter expositions in mathematics ;  |v 55 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |6 880-01  |a Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index. 
520 |a This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func. 
546 |a In English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Hilbert space. 
650 0 |a Differential equations, Partial. 
650 4 |a Differential equations, Partial. 
650 4 |a Equations. 
650 4 |a Hilbert space. 
650 6 |a Espace de Hilbert. 
650 6 |a Équations aux dérivées partielles. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Hilbert space  |2 fast 
700 1 |a McGhee, D. F. 
758 |i has work:  |a Partial differential equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGtvbTKfkdKGQ3jWFVGTH3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Picard, R.H. (Rainer H.).  |t Partial differential equations.  |d Berlin ; New York : De Gruyter, ©2011  |z 9783110250268  |w (DLC) 2011004423  |w (OCoLC)705567992 
830 0 |a De Gruyter expositions in mathematics ;  |v 55. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=736995  |z Texto completo 
880 0 |6 505-01/(S  |a Machine generated contents note: 1. Elements of Hilbert Space Theory -- 1.1. Hilbert Space -- 1.2. Some Construction Principles of Hilbert Spaces -- 1.2.1. Direct Sums of Hilbert Spaces -- 1.2.2. Dual Spaces -- 1.2.3. Tensor Products of Hilbert Spaces -- 2. Sobolev Lattices -- 2.1. Sobolev Chains -- 2.2. Sobolev Lattices -- 2.3. Sobolev Lattices from Tensor Products of Sobolev Chains -- 3. Linear Partial Differential Equations with Constant Coefficients -- 3.1. Partial Differential Equations in H-[∞]([∂]ν + e) -- 3.1.1. First Steps Towards a Solution Theory -- 3.1.2. The Tarski-Seidenberg Theorem and some Consequences -- 3.1.3. Regularity Loss (0 ...,0) -- 3.1.4. Classification of Partial Differential Equations -- 3.1.5. The Classical Classification of Partial Differential Equations -- 3.1.6. Elliptic, Parabolic, Hyperbolic-- 3.1.7. Evolutionary Expressions in Canonical Form -- 3.1.8. Functions of [∂]ν and Convolutions -- 3.1.9. Systems and Scalar Equations. 
938 |a YBP Library Services  |b YANK  |n 3688161 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 339993 
938 |a EBSCOhost  |b EBSC  |n 381760 
938 |a ebrary  |b EBRY  |n ebr10485452 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL736995 
938 |a Coutts Information Services  |b COUT  |n 20504063 
938 |a De Gruyter  |b DEGR  |n 9783110250275 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25310576 
994 |a 92  |b IZTAP