Cargando…

Roads to infinity : the mathematics of truth and proof /

Offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. From publisher description.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stillwell, John
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Natick, Mass. : A K Peters, ©2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn752580854
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 110915s2010 maua ob 001 0 eng d
010 |a  2010014077 
040 |a CUS  |b eng  |e pn  |c CUS  |d OCLCE  |d OCLCQ  |d OCLCF  |d CRCPR  |d OCLCQ  |d N$T  |d IDEBK  |d E7B  |d YDXCP  |d EBLCP  |d OCLCQ  |d MERUC  |d UAB  |d U3W  |d ERL  |d OCLCQ  |d NLE  |d OCLCQ  |d UKMGB  |d WYU  |d YDX  |d OCLCQ  |d TYFRS  |d LEAUB  |d CNNOR  |d LOA  |d UX1  |d K6U  |d VT2  |d CEF  |d OCLCQ  |d UKAHL  |d SFB  |d LUN  |d HS0  |d OCLCO  |d S2H  |d ELBRO  |d OCLCO  |d OCLCQ  |d D6H  |d INARC  |d OCLCO  |d OCLCQ  |d OCLCL 
066 |c (S 
015 |a GBB7A9685  |2 bnb 
016 7 |a 018392286  |2 Uk 
016 7 |a 015632394  |2 Uk 
019 |a 763279006  |a 767689030  |a 899156528  |a 1004609191  |a 1009342274  |a 1018081966  |a 1031047177  |a 1052111223  |a 1066008917  |a 1082235888  |a 1107553838  |a 1107781535  |a 1108177078  |a 1108871454  |a 1109773163  |a 1111223098  |a 1111386678  |a 1119026038  |a 1135963553  |a 1147842470  |a 1170594373  |a 1171700245  |a 1225579149  |a 1227633890  |a 1228534771  |a 1257345935  |a 1276767447  |a 1276822228  |a 1287176603  |a 1289860706  |a 1331411128  |a 1392106516 
020 |a 9781439865507  |q (electronic bk.) 
020 |a 1439865507  |q (electronic bk.) 
020 |z 9781568814667  |q (alk. paper) 
020 |z 1568814666  |q (alk. paper) 
020 |a 9780429104947  |q (e-book ;  |q PDF) 
020 |a 0429104944 
024 7 |a 10.1201/b11162  |2 doi 
029 1 |a UKMGB  |b 018392286 
029 1 |a AU@  |b 000055773120 
035 |a (OCoLC)752580854  |z (OCoLC)763279006  |z (OCoLC)767689030  |z (OCoLC)899156528  |z (OCoLC)1004609191  |z (OCoLC)1009342274  |z (OCoLC)1018081966  |z (OCoLC)1031047177  |z (OCoLC)1052111223  |z (OCoLC)1066008917  |z (OCoLC)1082235888  |z (OCoLC)1107553838  |z (OCoLC)1107781535  |z (OCoLC)1108177078  |z (OCoLC)1108871454  |z (OCoLC)1109773163  |z (OCoLC)1111223098  |z (OCoLC)1111386678  |z (OCoLC)1119026038  |z (OCoLC)1135963553  |z (OCoLC)1147842470  |z (OCoLC)1170594373  |z (OCoLC)1171700245  |z (OCoLC)1225579149  |z (OCoLC)1227633890  |z (OCoLC)1228534771  |z (OCoLC)1257345935  |z (OCoLC)1276767447  |z (OCoLC)1276822228  |z (OCoLC)1287176603  |z (OCoLC)1289860706  |z (OCoLC)1331411128  |z (OCoLC)1392106516 
037 |a TANDF_234398  |b Ingram Content Group 
042 |a dlr 
050 4 |a QA248  |b .S778 2010 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.3/22  |2 22 
049 |a UAMI 
100 1 |a Stillwell, John. 
245 1 0 |a Roads to infinity :  |b the mathematics of truth and proof /  |c John Stillwell. 
260 |a Natick, Mass. :  |b A K Peters,  |c ©2010. 
300 |a 1 online resource (xi, 203 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references (page 183188) and index. 
520 |a Offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. From publisher description. 
588 0 |a Print version record. 
505 0 |6 880-01  |a The diagonal argument : Counting and countability ; Does one infinite size fit all? ; Cantor's diagonal argument ; Transcendental numbers ; Other uncountability proofs ; Rates of growth ; The cardinality of the continuum ; Historical background -- Ordinals : Counting past infinity ; The countable ordinals ; The axiom of choice ; The continuum hypothesis ; Induction ; Cantor normal form ; Goodstein's Theorem ; Hercules and the Hydra ; Historical background -- Computability and proof : Formal systems ; Post's approach to incompleteness ; Gödel's first incompleteness theorem ; Gödel's second incompleteness theorem ; Formalization of computability ; The halting problem ; The entscheidungsproblem ; Historical background -- Logic : Propositional logic ; A classical system ; A cut-free system for propositional logic ; Happy endings ; Predicate logic ; Completeness, consistency, happy endings ; Historical background -- Arithmetic : How might we prove consistency? ; Formal arithmetic ; The systems PA and PA ; Embedding PA and PA; Cut elimination in PA ; The height of this great argument ; Roads to infinity ; Historical background -- Natural unprovable sentences : A generalized Goodstein Theorem ; Countable ordinals via natural numbers ; From generalized Goodstein to well-ordering ; Generalized and ordinary Goodstein ; Provably computable functions ; Complete disorder is impossible ; The hardest theorem in graph theory ; Historical background -- Axioms of infinity : Set theory without infinity ; Inaccessible cardinals ; The axiom of determinacy ; Largeness axioms for arithmetic ; Large cardinals and finite mathematics ; Historical background. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Set theory. 
650 0 |a Infinite. 
650 0 |a Logic, Symbolic and mathematical. 
650 6 |a Théorie des ensembles. 
650 6 |a Infini. 
650 6 |a Logique symbolique et mathématique. 
650 7 |a infinity.  |2 aat 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Infinite  |2 fast 
650 7 |a Logic, Symbolic and mathematical  |2 fast 
650 7 |a Set theory  |2 fast 
758 |i has work:  |a Roads to infinity (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGkYMw7kRjrKHB4xjGbtDq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Stillwell, John.  |t Roads to infinity.  |d Natick, Mass. : A K Peters, ©2010  |z 9781568814667  |w (DLC) 2010014077  |w (OCoLC)460058722 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1633378  |z Texto completo 
880 0 |6 505-01/(S  |a The diagonal argument : Counting and countability ; Does one infinite size fit all? ; Cantor's diagonal argument ; Transcendental numbers ; Other uncountability proofs ; Rates of growth ; The cardinality of the continuum ; Historical background -- Ordinals : Counting past infinity ; The countable ordinals ; The axiom of choice ; The continuum hypothesis ; Induction ; Cantor normal form ; Goodstein's Theorem ; Hercules and the Hydra ; Historical background -- Computability and proof : Formal systems ; Post's approach to incompleteness ; Gödel's first incompleteness theorem ; Gödel's second incompleteness theorem ; Formalization of computability ; The halting problem ; The entscheidungsproblem ; Historical background -- Logic : Propositional logic ; A classical system ; A cut-free system for propositional logic ; Happy endings ; Predicate logic ; Completeness, consistency, happy endings ; Historical background -- Arithmetic : How might we prove consistency? ; Formal arithmetic ; The systems PA and PAω ; Embedding PA and PAω; Cut elimination in PAω ; The height of this great argument ; Roads to infinity ; Historical background -- Natural unprovable sentences : A generalized Goodstein Theorem ; Countable ordinals via natural numbers ; From generalized Goodstein to well-ordering ; Generalized and ordinary Goodstein ; Provably computable functions ; Complete disorder is impossible ; The hardest theorem in graph theory ; Historical background -- Axioms of infinity : Set theory without infinity ; Inaccessible cardinals ; The axiom of determinacy ; Largeness axioms for arithmetic ; Large cardinals and finite mathematics ; Historical background. 
938 |a YBP Library Services  |b YANK  |n 15917992 
938 |a CRC Press  |b CRCP  |n AKP0KE01054PDF 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1633378 
938 |a ebrary  |b EBRY  |n ebr11002730 
938 |a EBSCOhost  |b EBSC  |n 926529 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30547356 
938 |a YBP Library Services  |b YANK  |n 10376421 
938 |a Taylor & Francis  |b TAFR  |n 9780429104947 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24132439 
938 |a eLibro  |b ELBO  |n ELB143601 
938 |a Internet Archive  |b INAR  |n roadstoinfinitym0000stil 
994 |a 92  |b IZTAP