|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn752580854 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
110915s2010 maua ob 001 0 eng d |
010 |
|
|
|a 2010014077
|
040 |
|
|
|a CUS
|b eng
|e pn
|c CUS
|d OCLCE
|d OCLCQ
|d OCLCF
|d CRCPR
|d OCLCQ
|d N$T
|d IDEBK
|d E7B
|d YDXCP
|d EBLCP
|d OCLCQ
|d MERUC
|d UAB
|d U3W
|d ERL
|d OCLCQ
|d NLE
|d OCLCQ
|d UKMGB
|d WYU
|d YDX
|d OCLCQ
|d TYFRS
|d LEAUB
|d CNNOR
|d LOA
|d UX1
|d K6U
|d VT2
|d CEF
|d OCLCQ
|d UKAHL
|d SFB
|d LUN
|d HS0
|d OCLCO
|d S2H
|d ELBRO
|d OCLCO
|d OCLCQ
|d D6H
|d INARC
|d OCLCO
|d OCLCQ
|d OCLCL
|
066 |
|
|
|c (S
|
015 |
|
|
|a GBB7A9685
|2 bnb
|
016 |
7 |
|
|a 018392286
|2 Uk
|
016 |
7 |
|
|a 015632394
|2 Uk
|
019 |
|
|
|a 763279006
|a 767689030
|a 899156528
|a 1004609191
|a 1009342274
|a 1018081966
|a 1031047177
|a 1052111223
|a 1066008917
|a 1082235888
|a 1107553838
|a 1107781535
|a 1108177078
|a 1108871454
|a 1109773163
|a 1111223098
|a 1111386678
|a 1119026038
|a 1135963553
|a 1147842470
|a 1170594373
|a 1171700245
|a 1225579149
|a 1227633890
|a 1228534771
|a 1257345935
|a 1276767447
|a 1276822228
|a 1287176603
|a 1289860706
|a 1331411128
|a 1392106516
|
020 |
|
|
|a 9781439865507
|q (electronic bk.)
|
020 |
|
|
|a 1439865507
|q (electronic bk.)
|
020 |
|
|
|z 9781568814667
|q (alk. paper)
|
020 |
|
|
|z 1568814666
|q (alk. paper)
|
020 |
|
|
|a 9780429104947
|q (e-book ;
|q PDF)
|
020 |
|
|
|a 0429104944
|
024 |
7 |
|
|a 10.1201/b11162
|2 doi
|
029 |
1 |
|
|a UKMGB
|b 018392286
|
029 |
1 |
|
|a AU@
|b 000055773120
|
035 |
|
|
|a (OCoLC)752580854
|z (OCoLC)763279006
|z (OCoLC)767689030
|z (OCoLC)899156528
|z (OCoLC)1004609191
|z (OCoLC)1009342274
|z (OCoLC)1018081966
|z (OCoLC)1031047177
|z (OCoLC)1052111223
|z (OCoLC)1066008917
|z (OCoLC)1082235888
|z (OCoLC)1107553838
|z (OCoLC)1107781535
|z (OCoLC)1108177078
|z (OCoLC)1108871454
|z (OCoLC)1109773163
|z (OCoLC)1111223098
|z (OCoLC)1111386678
|z (OCoLC)1119026038
|z (OCoLC)1135963553
|z (OCoLC)1147842470
|z (OCoLC)1170594373
|z (OCoLC)1171700245
|z (OCoLC)1225579149
|z (OCoLC)1227633890
|z (OCoLC)1228534771
|z (OCoLC)1257345935
|z (OCoLC)1276767447
|z (OCoLC)1276822228
|z (OCoLC)1287176603
|z (OCoLC)1289860706
|z (OCoLC)1331411128
|z (OCoLC)1392106516
|
037 |
|
|
|a TANDF_234398
|b Ingram Content Group
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA248
|b .S778 2010
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3/22
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Stillwell, John.
|
245 |
1 |
0 |
|a Roads to infinity :
|b the mathematics of truth and proof /
|c John Stillwell.
|
260 |
|
|
|a Natick, Mass. :
|b A K Peters,
|c ©2010.
|
300 |
|
|
|a 1 online resource (xi, 203 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
504 |
|
|
|a Includes bibliographical references (page 183188) and index.
|
520 |
|
|
|a Offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. From publisher description.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|6 880-01
|a The diagonal argument : Counting and countability ; Does one infinite size fit all? ; Cantor's diagonal argument ; Transcendental numbers ; Other uncountability proofs ; Rates of growth ; The cardinality of the continuum ; Historical background -- Ordinals : Counting past infinity ; The countable ordinals ; The axiom of choice ; The continuum hypothesis ; Induction ; Cantor normal form ; Goodstein's Theorem ; Hercules and the Hydra ; Historical background -- Computability and proof : Formal systems ; Post's approach to incompleteness ; Gödel's first incompleteness theorem ; Gödel's second incompleteness theorem ; Formalization of computability ; The halting problem ; The entscheidungsproblem ; Historical background -- Logic : Propositional logic ; A classical system ; A cut-free system for propositional logic ; Happy endings ; Predicate logic ; Completeness, consistency, happy endings ; Historical background -- Arithmetic : How might we prove consistency? ; Formal arithmetic ; The systems PA and PA ; Embedding PA and PA; Cut elimination in PA ; The height of this great argument ; Roads to infinity ; Historical background -- Natural unprovable sentences : A generalized Goodstein Theorem ; Countable ordinals via natural numbers ; From generalized Goodstein to well-ordering ; Generalized and ordinary Goodstein ; Provably computable functions ; Complete disorder is impossible ; The hardest theorem in graph theory ; Historical background -- Axioms of infinity : Set theory without infinity ; Inaccessible cardinals ; The axiom of determinacy ; Largeness axioms for arithmetic ; Large cardinals and finite mathematics ; Historical background.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Set theory.
|
650 |
|
0 |
|a Infinite.
|
650 |
|
0 |
|a Logic, Symbolic and mathematical.
|
650 |
|
6 |
|a Théorie des ensembles.
|
650 |
|
6 |
|a Infini.
|
650 |
|
6 |
|a Logique symbolique et mathématique.
|
650 |
|
7 |
|a infinity.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Infinite
|2 fast
|
650 |
|
7 |
|a Logic, Symbolic and mathematical
|2 fast
|
650 |
|
7 |
|a Set theory
|2 fast
|
758 |
|
|
|i has work:
|a Roads to infinity (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGkYMw7kRjrKHB4xjGbtDq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Stillwell, John.
|t Roads to infinity.
|d Natick, Mass. : A K Peters, ©2010
|z 9781568814667
|w (DLC) 2010014077
|w (OCoLC)460058722
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1633378
|z Texto completo
|
880 |
0 |
|
|6 505-01/(S
|a The diagonal argument : Counting and countability ; Does one infinite size fit all? ; Cantor's diagonal argument ; Transcendental numbers ; Other uncountability proofs ; Rates of growth ; The cardinality of the continuum ; Historical background -- Ordinals : Counting past infinity ; The countable ordinals ; The axiom of choice ; The continuum hypothesis ; Induction ; Cantor normal form ; Goodstein's Theorem ; Hercules and the Hydra ; Historical background -- Computability and proof : Formal systems ; Post's approach to incompleteness ; Gödel's first incompleteness theorem ; Gödel's second incompleteness theorem ; Formalization of computability ; The halting problem ; The entscheidungsproblem ; Historical background -- Logic : Propositional logic ; A classical system ; A cut-free system for propositional logic ; Happy endings ; Predicate logic ; Completeness, consistency, happy endings ; Historical background -- Arithmetic : How might we prove consistency? ; Formal arithmetic ; The systems PA and PAω ; Embedding PA and PAω; Cut elimination in PAω ; The height of this great argument ; Roads to infinity ; Historical background -- Natural unprovable sentences : A generalized Goodstein Theorem ; Countable ordinals via natural numbers ; From generalized Goodstein to well-ordering ; Generalized and ordinary Goodstein ; Provably computable functions ; Complete disorder is impossible ; The hardest theorem in graph theory ; Historical background -- Axioms of infinity : Set theory without infinity ; Inaccessible cardinals ; The axiom of determinacy ; Largeness axioms for arithmetic ; Large cardinals and finite mathematics ; Historical background.
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15917992
|
938 |
|
|
|a CRC Press
|b CRCP
|n AKP0KE01054PDF
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1633378
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11002730
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 926529
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis30547356
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10376421
|
938 |
|
|
|a Taylor & Francis
|b TAFR
|n 9780429104947
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24132439
|
938 |
|
|
|a eLibro
|b ELBO
|n ELB143601
|
938 |
|
|
|a Internet Archive
|b INAR
|n roadstoinfinitym0000stil
|
994 |
|
|
|a 92
|b IZTAP
|