|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn751977960 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
110912s2009 nyua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d E7B
|d OCLCF
|d NLGGC
|d YDXCP
|d EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d AZK
|d MERUC
|d MOR
|d PIFAG
|d ZCU
|d OCLCQ
|d U3W
|d STF
|d WRM
|d AGLDB
|d OCLCQ
|d VTS
|d NRAMU
|d ICG
|d INT
|d AU@
|d OCLCQ
|d TKN
|d OCLCQ
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d M8D
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 904720228
|a 961571584
|a 962652373
|a 1058035091
|
020 |
|
|
|a 9781614705611
|q (electronic bk.)
|
020 |
|
|
|a 1614705615
|q (electronic bk.)
|
020 |
|
|
|z 9781604564945
|
020 |
|
|
|z 1604564946
|
020 |
|
|
|z 1600214053
|
020 |
|
|
|z 9781600214059
|
029 |
1 |
|
|a AU@
|b 000053299520
|
029 |
1 |
|
|a AU@
|b 000069242508
|
029 |
1 |
|
|a DEBBG
|b BV043136596
|
029 |
1 |
|
|a DEBBG
|b BV044088714
|
029 |
1 |
|
|a DEBSZ
|b 421553081
|
029 |
1 |
|
|a DEBSZ
|b 44954429X
|
029 |
1 |
|
|a NZ1
|b 15347003
|
035 |
|
|
|a (OCoLC)751977960
|z (OCoLC)904720228
|z (OCoLC)961571584
|z (OCoLC)962652373
|z (OCoLC)1058035091
|
050 |
|
4 |
|a QA329.2
|b .D53 2009eb
|
072 |
|
7 |
|a MAT
|x 037000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.7246
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Diagana, Toka.
|
245 |
1 |
0 |
|a Non-archimedean linear operators and applications /
|c Toka Diagana.
|
260 |
|
|
|a Hauppauge, N.Y. :
|b Nova Science ;
|a Lancaster :
|b Gazelle [distributor],
|c 2009.
|
300 |
|
|
|a 1 online resource (xiii, 92 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references (pages 87-90) and index.
|
505 |
0 |
|
|a NON-ARCHIMEDEAN LINEAR OPERATORSAND APPLICATIONS; Contents; Preface; Non-Archimedean Valued Fields; 1.1 Introduction; 1.2 Non-Archimedean Valued Fields; 1.2.1 Basic Definitions; 1.2.2 The t-Vector Space Kt; 1.3 Construction of Qp; 1.3.1 Introduction; 1.3.2 The Field Qp; 1.3.3 Convergence of Power Series overQp; 1.4 Construction of K((x)); 1.5 Bibliographical Notes; Non-Archimedean Banach and HilbertSpaces; 2.1 Non-Archimedean Banach Spaces; 2.1.1 Basic Definitions; 2.1.2 Examples of Non-Archimedean Banach Spaces; 2.2 Free Banach Spaces; 2.2.1 Definitions; 2.2.2 Examples.
|
505 |
8 |
|
|a 2.3 Non-Archimedean Hilbert Spaces2.3.1 Introduction; 2.3.2 Non-Archimedean Hilbert Spaces; 2.3.3 The Hilbert Space Ew1 Ew2 ... Ewt; 2.4 Bibliographical Notes; Non-Archimedean Bounded LinearOperators; 3.1 Introduction; 3.2 Bounded Linear Operators on Non-Archimedean Banach Spaces; 3.2.1 Basic Definitions; 3.2.2 Examples; 3.2.3 The Banach Algebra B(X); 3.2.4 Further Properties of Bounded Linear Operators; 3.3 Bounded Linear Operators on Hilbert Spaces Ew; 3.3.1 Introduction; 3.3.2 Representation of Bounded Operators By Infinite Matrices; 3.3.3 Existence of the Adjoint.
|
505 |
8 |
|
|a 3.3.4 Examples of Bounded Operators with no Adjoint3.4 Perturbation of Bases; 3.5 Hilbert-Schmidt Operators; 3.5.1 Basic Definitions; 3.5.2 Further Properties of Hilbert-Schmidt Operators; 3.5.3 Completely Continuous Operators; 3.5.4 Trace; 3.5.5 Examples; 3.6 Open Problems; 3.7 Bibliographical Notes; Non-Archimedean Unbounded LinearOperators; 4.1 Introduction; 4.2 Basic Definitions; 4.2.1 Example; 4.2.2 Existence of the Adjoint; 4.2.3 Examples of Unbounded Operators With no Adjoint; 4.3 Closed Linear Operators on Ew; 4.4 Diagonal Operators on Ew; 4.5 Open Problems; 4.6 Bibliographical Notes.
|
505 |
8 |
|
|a Non-Archimedean Bilinear Forms5.1 Introduction; 5.2 Basic Definitions; 5.2.1 Continuous Linear Functionals on Ew; 5.2.2 Bounded Bilinear Forms on Ew Ew; 5.2.3 Unbounded Bilinear Forms on Ew Ew; 5.3 Closed and Closable non-Archimedean Bilinear Forms; 5.3.1 Closedness of the Form Sum; 5.3.2 Construction of a non-Archimedean Hilbert Space Using Quadratic Forms; 5.3.3 Further Properties of the Closure; 5.4 Representation of Bilinear Forms on Ew Ew by Linear Operators; 5.5 Bibliographical Notes; Functions of Some Self-adjoint LinearOperators on Ew; 6.1 Introduction.
|
505 |
8 |
|
|a 6.2 Products and Sums of Diagonal Operators6.3 Integer Powers of Diagonal Operators; 6.4 Functions of Self-Adjoint Operators; 6.5 Functions of Some Symmetric Square Matrices Over Qp Qp; 6.5.1 The Powers of the Matrix T; 6.5.2 Exponential of the Matrix T; 6.6 Open Problems; 6.7 Bibliographical Notes; One-Parameter Family of Bounded LinearOperators on Free Banach Spaces; 7.1 Introduction; 7.2 Basic Definitions; 7.3 Properties of non-Archimedean C0-Groups; 7.4 Existence of Solutions to Some p-adic Differential Equations; 7.5 Open Problems; 7.6 Bibliographical Notes; References; Index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Linear operators.
|
650 |
|
0 |
|a Banach spaces.
|
650 |
|
0 |
|a Hilbert space.
|
650 |
|
6 |
|a Opérateurs linéaires.
|
650 |
|
6 |
|a Espaces de Banach.
|
650 |
|
6 |
|a Espace de Hilbert.
|
650 |
|
7 |
|a MATHEMATICS
|x Functional Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Banach spaces
|2 fast
|
650 |
|
7 |
|a Hilbert space
|2 fast
|
650 |
|
7 |
|a Linear operators
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Diagana, Toka.
|t Non-archimedean linear operators and applications.
|d Hauppauge, N.Y. : Nova Science ; Lancaster : Gazelle [distributor], 2009
|z 9781604564945
|w (OCoLC)502323541
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3020235
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35904540
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3020235
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10676371
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 387226
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7134742
|
994 |
|
|
|a 92
|b IZTAP
|