Cargando…

Non-archimedean linear operators and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Diagana, Toka
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge, N.Y. : Lancaster : Nova Science ; Gazelle [distributor], 2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn751977960
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 110912s2009 nyua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d E7B  |d OCLCF  |d NLGGC  |d YDXCP  |d EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d AZK  |d MERUC  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d U3W  |d STF  |d WRM  |d AGLDB  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d M8D  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 904720228  |a 961571584  |a 962652373  |a 1058035091 
020 |a 9781614705611  |q (electronic bk.) 
020 |a 1614705615  |q (electronic bk.) 
020 |z 9781604564945 
020 |z 1604564946 
020 |z 1600214053 
020 |z 9781600214059 
029 1 |a AU@  |b 000053299520 
029 1 |a AU@  |b 000069242508 
029 1 |a DEBBG  |b BV043136596 
029 1 |a DEBBG  |b BV044088714 
029 1 |a DEBSZ  |b 421553081 
029 1 |a DEBSZ  |b 44954429X 
029 1 |a NZ1  |b 15347003 
035 |a (OCoLC)751977960  |z (OCoLC)904720228  |z (OCoLC)961571584  |z (OCoLC)962652373  |z (OCoLC)1058035091 
050 4 |a QA329.2  |b .D53 2009eb 
072 7 |a MAT  |x 037000  |2 bisacsh 
082 0 4 |a 515.7246  |2 22 
049 |a UAMI 
100 1 |a Diagana, Toka. 
245 1 0 |a Non-archimedean linear operators and applications /  |c Toka Diagana. 
260 |a Hauppauge, N.Y. :  |b Nova Science ;  |a Lancaster :  |b Gazelle [distributor],  |c 2009. 
300 |a 1 online resource (xiii, 92 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 87-90) and index. 
505 0 |a NON-ARCHIMEDEAN LINEAR OPERATORSAND APPLICATIONS; Contents; Preface; Non-Archimedean Valued Fields; 1.1 Introduction; 1.2 Non-Archimedean Valued Fields; 1.2.1 Basic Definitions; 1.2.2 The t-Vector Space Kt; 1.3 Construction of Qp; 1.3.1 Introduction; 1.3.2 The Field Qp; 1.3.3 Convergence of Power Series overQp; 1.4 Construction of K((x)); 1.5 Bibliographical Notes; Non-Archimedean Banach and HilbertSpaces; 2.1 Non-Archimedean Banach Spaces; 2.1.1 Basic Definitions; 2.1.2 Examples of Non-Archimedean Banach Spaces; 2.2 Free Banach Spaces; 2.2.1 Definitions; 2.2.2 Examples. 
505 8 |a 2.3 Non-Archimedean Hilbert Spaces2.3.1 Introduction; 2.3.2 Non-Archimedean Hilbert Spaces; 2.3.3 The Hilbert Space Ew1 Ew2 ... Ewt; 2.4 Bibliographical Notes; Non-Archimedean Bounded LinearOperators; 3.1 Introduction; 3.2 Bounded Linear Operators on Non-Archimedean Banach Spaces; 3.2.1 Basic Definitions; 3.2.2 Examples; 3.2.3 The Banach Algebra B(X); 3.2.4 Further Properties of Bounded Linear Operators; 3.3 Bounded Linear Operators on Hilbert Spaces Ew; 3.3.1 Introduction; 3.3.2 Representation of Bounded Operators By Infinite Matrices; 3.3.3 Existence of the Adjoint. 
505 8 |a 3.3.4 Examples of Bounded Operators with no Adjoint3.4 Perturbation of Bases; 3.5 Hilbert-Schmidt Operators; 3.5.1 Basic Definitions; 3.5.2 Further Properties of Hilbert-Schmidt Operators; 3.5.3 Completely Continuous Operators; 3.5.4 Trace; 3.5.5 Examples; 3.6 Open Problems; 3.7 Bibliographical Notes; Non-Archimedean Unbounded LinearOperators; 4.1 Introduction; 4.2 Basic Definitions; 4.2.1 Example; 4.2.2 Existence of the Adjoint; 4.2.3 Examples of Unbounded Operators With no Adjoint; 4.3 Closed Linear Operators on Ew; 4.4 Diagonal Operators on Ew; 4.5 Open Problems; 4.6 Bibliographical Notes. 
505 8 |a Non-Archimedean Bilinear Forms5.1 Introduction; 5.2 Basic Definitions; 5.2.1 Continuous Linear Functionals on Ew; 5.2.2 Bounded Bilinear Forms on Ew Ew; 5.2.3 Unbounded Bilinear Forms on Ew Ew; 5.3 Closed and Closable non-Archimedean Bilinear Forms; 5.3.1 Closedness of the Form Sum; 5.3.2 Construction of a non-Archimedean Hilbert Space Using Quadratic Forms; 5.3.3 Further Properties of the Closure; 5.4 Representation of Bilinear Forms on Ew Ew by Linear Operators; 5.5 Bibliographical Notes; Functions of Some Self-adjoint LinearOperators on Ew; 6.1 Introduction. 
505 8 |a 6.2 Products and Sums of Diagonal Operators6.3 Integer Powers of Diagonal Operators; 6.4 Functions of Self-Adjoint Operators; 6.5 Functions of Some Symmetric Square Matrices Over Qp Qp; 6.5.1 The Powers of the Matrix T; 6.5.2 Exponential of the Matrix T; 6.6 Open Problems; 6.7 Bibliographical Notes; One-Parameter Family of Bounded LinearOperators on Free Banach Spaces; 7.1 Introduction; 7.2 Basic Definitions; 7.3 Properties of non-Archimedean C0-Groups; 7.4 Existence of Solutions to Some p-adic Differential Equations; 7.5 Open Problems; 7.6 Bibliographical Notes; References; Index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Linear operators. 
650 0 |a Banach spaces. 
650 0 |a Hilbert space. 
650 6 |a Opérateurs linéaires. 
650 6 |a Espaces de Banach. 
650 6 |a Espace de Hilbert. 
650 7 |a MATHEMATICS  |x Functional Analysis.  |2 bisacsh 
650 7 |a Banach spaces  |2 fast 
650 7 |a Hilbert space  |2 fast 
650 7 |a Linear operators  |2 fast 
776 0 8 |i Print version:  |a Diagana, Toka.  |t Non-archimedean linear operators and applications.  |d Hauppauge, N.Y. : Nova Science ; Lancaster : Gazelle [distributor], 2009  |z 9781604564945  |w (OCoLC)502323541 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3020235  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35904540 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3020235 
938 |a ebrary  |b EBRY  |n ebr10676371 
938 |a EBSCOhost  |b EBSC  |n 387226 
938 |a YBP Library Services  |b YANK  |n 7134742 
994 |a 92  |b IZTAP