|
|
|
|
LEADER |
00000cam a2200000M 4500 |
001 |
EBOOKCENTRAL_ocn751695083 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un|---uuuuu |
008 |
110905s2011 xx o 000 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d UKDOC
|d OCLCQ
|d DEBBG
|d OCLCQ
|d ZCU
|d OCLCQ
|d MERUC
|d ICG
|d OCLCO
|d OCLCF
|d AU@
|d OCLCQ
|d TKN
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 816854392
|
020 |
|
|
|a 1283204576
|
020 |
|
|
|a 9781283204576
|
020 |
|
|
|a 9781119978855
|
020 |
|
|
|a 1119978858
|
029 |
1 |
|
|a AU@
|b 000055772873
|
029 |
1 |
|
|a DEBBG
|b BV041911957
|
029 |
1 |
|
|a DEBBG
|b BV044154375
|
029 |
1 |
|
|a DEBSZ
|b 396993265
|
035 |
|
|
|a (OCoLC)751695083
|z (OCoLC)816854392
|
050 |
|
4 |
|a QH212
|
082 |
0 |
4 |
|a 502.8/25
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Aberration-corrected Analytical Electron Microscopy.
|
260 |
|
|
|b Wiley
|c 2011.
|
300 |
|
|
|a 1 online resource (304)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a The book is concerned with the theory, background, and practical use of transmission electron microscopes with lens correctors that can correct the effects of spherical aberration. The book also covers a comparison with aberration correction in the TEM and applications of analytical aberration corrected STEM in materials science and biology. This book is essential for microscopists involved in nanoscale and materials microanalysis especially those using scanning transmission electron microscopy, and related analytical techniques such as electron diffraction x-ray spectrometry (EDXS) and electron energy loss spectroscopy (EELS).
|
505 |
0 |
|
|6 880-01
|a Aberration-Corrected Analytical Transmission Electron Microscopy -- Contents -- List of Contributors -- Preface -- 1 General Introduction to Transmission Electron Microscopy (TEM) -- 1.1 What TEM Offers -- 1.2 Electron Scattering -- 1.2.1 Elastic Scattering -- 1.2.2 Inelastic Scattering -- 1.3 Signals which could be Collected -- 1.4 Image Computing -- 1.4.1 Image Processing -- 1.4.2 Image Simulation -- 1.5 Requirements of a Specimen -- 1.6 STEM Versus CTEM -- 1.7 Two Dimensional and Three Dimensional Information -- 2 Introduction to Electron Optics
|
505 |
8 |
|
|a 2.1 Revision of Microscopy with Visible Light and Electrons2.2 Fresnel and Fraunhofer Diffraction -- 2.3 Image Resolution -- 2.4 Electron Lenses -- 2.4.1 Electron Trajectories -- 2.4.2 Aberrations -- 2.5 Electron Sources -- 2.6 Probe Forming Optics and Apertures -- 2.7 SEM, TEM and STEM -- 3 Development of STEM -- 3.1 Introduction: Structural and Analytical Information in Electron Microscopy -- 3.2 The Crewe Revolution: How STEM Solves the Information Problem -- 3.3 Electron Optical Simplicity of STEM -- 3.4 The Signal Freedom of STEM
|
505 |
8 |
|
|a 3.4.1 Bright-Field Detector (Phase Contrast, Diffraction Contrast)3.4.2 ADF, HAADF -- 3.4.3 Nanodiffraction -- 3.4.4 EELS -- 3.4.5 EDX -- 3.4.6 Other Techniques -- 3.5 Beam Damage and Beam Writing -- 3.6 Correction of Spherical Aberration -- 3.7 What does the Future Hold? -- 4 Lens Aberrations: Diagnosis and Correction -- 4.1 Introduction -- 4.2 Geometric Lens Aberrations and Their Classification -- 4.3 Spherical Aberration-Correctors -- 4.3.1 Quadrupole-Octupole Corrector -- 4.3.2 Hexapole Corrector -- 4.3.3 Parasitic Aberrations
|
505 |
8 |
|
|a 4.4 Getting Around Chromatic Aberrations4.5 Diagnosing Lens Aberrations -- 4.5.1 Image-based Methods -- 4.5.2 Ronchigram-based Methods -- 4.5.3 Precision Needed -- 4.6 Fifth Order Aberration-Correction -- 4.7 Conclusions -- 5 Theory and Simulations of STEM Imaging -- 5.1 Introduction -- 5.2 Z-Contrast Imaging of Single Atoms -- 5.3 STEM Imaging Of Crystalline Materials -- 5.3.1 Bright-field Imaging and Phase Contrast -- 5.3.2 Annular Dark-field Imaging -- 5.4 Incoherent Imaging with Dynamical Scattering -- 5.5 Thermal Diffuse Scattering
|
505 |
8 |
|
|a 5.5.1 Approximations for Phonon Scattering5.6 Methods of Simulation for ADF Imaging -- 5.6.1 Absorptive Potentials -- 5.6.2 Frozen Phonon Approach -- 5.7 Conclusions -- 6 Details of STEM -- 6.1 Signal to Noise Ratio and Some of its Implications -- 6.2 The Relationships Between Probe Size, Probe Current and Probe Angle -- 6.2.1 The Geometric Model Revisited -- 6.2.2 The Minimum Probe Size, the Optimum Angle and the Probe Current -- 6.2.3 The Probe Current -- 6.2.4 A Simple Approximation to Wave Optical Probe Size -- 6.2.5 The Effect of Chromatic Aberration
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Transmission electron microscopy.
|
650 |
|
0 |
|a Aberration.
|
650 |
|
0 |
|a Achromatism.
|
650 |
|
6 |
|a Microscopie électronique à transmission.
|
650 |
|
6 |
|a Aberration.
|
650 |
|
6 |
|a Achromatisme.
|
650 |
|
7 |
|a Aberration
|2 fast
|
650 |
|
7 |
|a Achromatism
|2 fast
|
650 |
|
7 |
|a Transmission electron microscopy
|2 fast
|
655 |
|
4 |
|a Electronic resource.
|
720 |
|
|
|a Brydson, Rik.
|
758 |
|
|
|i has work:
|a Aberration-corrected analytical electron microscopy (Text)
|1 https://id.oclc.org/worldcat/entity/E39PD3f3MYbPkH6fQcPv336X4V
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=693217
|z Texto completo
|
880 |
8 |
|
|6 505-01/(S
|a 5 Theory and Simulations of STEM Imaging -- 5.1 Introduction -- 5.2 Z-Contrast Imaging of Single Atoms -- 5.3 STEM Imaging Of Crystalline Materials -- 5.3.1 Bright-field Imaging and Phase Contrast -- 5.3.2 Annular Dark-field Imaging -- 5.4 Incoherent Imaging with Dynamical Scattering -- 5.5 Thermal Diffuse Scattering -- 5.5.1 Approximations for Phonon Scattering -- 5.6 Methods of Simulation for ADF Imaging -- 5.6.1 Absorptive Potentials -- 5.6.2 Frozen Phonon Approach -- 5.7 Conclusions -- 6 Details of STEM -- 6.1 Signal to Noise Ratio and Some of its Implications -- 6.2 The Relationships Between Probe Size, Probe Current and Probe Angle -- 6.2.1 The Geometric Model Revisited -- 6.2.2 The Minimum Probe Size, the Optimum Angle and the Probe Current -- 6.2.3 The Probe Current -- 6.2.4 A Simple Approximation to Wave Optical Probe Size -- 6.2.5 The Effect of Chromatic Aberration -- 6.2.6 Choosing αopt in Practice -- 6.2.7 The Effect of Making a Small Error in the Choice of αopt -- 6.2.8 The Effect of α On the Diffraction Pattern -- 6.2.9 Probe Spreading and Depth of Field -- 6.3 The Condenser System -- 6.4 The Scanning System -- 6.4.1 Principles of the Scanning System -- 6.4.2 Implementation of the Scanning System -- 6.4.3 Deviations of the Scanning System From Ideality -- 6.4.4 The Relationship Between Pixel Size and Probe Size -- 6.4.5 Drift, Drift Correction and Smart Acquisition -- 6.5 The Specimen Stage -- 6.6 Post-Specimen Optics -- 6.7 Beam Blanking -- 6.8 Detectors -- 6.8.1 Basic Properties of a Detector -- 6.8.2 Single and Array Detectors -- 6.8.3 Scintillator/Photomultiplier Detector -- 6.8.4 Semiconductor Detectors -- 6.8.5 CCD Cameras -- 6.9 Imaging Using Transmitted Electrons -- 6.9.1 The Diffraction Pattern -- 6.9.2 Coherent Effects in the Diffraction Pattern -- 6.9.3 Small Angular Range -- Bright Field and Tilted Dark Field Images.
|
938 |
|
|
|a 123Library
|b 123L
|n 19382
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL693217
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 320457
|
994 |
|
|
|a 92
|b IZTAP
|