Dynamics And Symmetry.
This book contains the first systematic exposition of the global and local theory of dynamics equivariant with respect to a (compact) Lie group. Aside from general genericity and normal form theorems on equivariant bifurcation, it describes many general families of examples of equivariant bifurcatio...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
World Scientific
2007.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- 1. Groups
- 1.1 Definition of a group and examples
- 1.2 Homomorphisms, subgroups and quotient groups
- 1.2.1 Generators and relations for .nite groups
- 1.3 Constructions
- 1.4 Topological groups
- 1.5 Lie groups
- 1.5.1 The Lie bracket of vector fields
- 1.5.2 The Lie algebra of G
- 1.5.3 The exponential map of g
- 1.5.4 Additional properties of brackets and exp
- 1.5.5 Closed subgroups of a Lie group
- 1.6 Haarmeasure
- 2. Group Actions and Representations
- 2.1 Introduction
- 2.2 Groups and G-spaces
- 2.2.1 Continuous actions and G-spaces
- 2.3 Orbit spaces and actions
- 2.4 Twisted products
- 2.4.1 Induced G-spaces
- 2.5 Isotropy type and stratification by isotropy type
- 2.6 Representations
- 2.6.1 Averaging over G
- 2.7 Irreducible representations and the isotypic decomposition
- 2.7.1 C-representations
- 2.7.2 Absolutely irreducible representations
- 2.8 Orbit structure for representations
- 2.9 Slices
- 2.9.1 Slices for linear finite group actions
- 2.10 Invariant and equivariant maps
- 2.10.1 Smooth invariant and equivariant maps on representations
- 2.10.2 Equivariant vector fields and flows
- 3. Smooth G-manifolds
- 3.1 Proper G-manifolds
- 3.1.1 Proper free actions
- 3.2 G-vector bundles
- 3.3 Infinitesimal theory
- 3.4 Riemannianmanifolds
- 3.4.1 Exponential map of a complete Riemannian manifold
- 3.4.2 The tubular neighbourhood theorem
- 3.4.3 Riemannian G-manifolds
- 3.5 The differentiable slice theorem
- 3.6 Equivariant isotopy extension theorem
- 3.7 Orbit structure for G-manifolds
- 3.7.1 Closed filtration of M by isotropy type
- 3.8 The stratification of M by normal isotropy type
- 3.9 Stratified sets
- 3.9.1 Transversality to a Whitney stratification
- 3.9.2 Regularity of stratification by normal isotropy type
- 3.10 Invariant Riemannian metrics on a compact Lie group
- 3.10.1 The adjoint representations
- 3.10.2 The exponential map
- 3.10.3 Closed subgroups of a Lie group
- 4. Equivariant Bifurcation Theory: Steady State Bifurcation
- 4.1 Introduction and preliminaries
- 4.1.1 Normalized families
- 4.2 Solution branches and the branching pattern
- 4.2.1 Stability of branching patterns
- 4.3 Symmetry breaking8212;theMISC
- 4.3.1 Symmetry breaking isotropy types
- 4.3.2 Maximal isotropy subgroup conjecture
- 4.4 Determinacy
- 4.4.1 Polynomial maps
- 4.4.2 Finite determinacy
- 4.5 The hyperoctahedral family
- 4.5.1 The representations (Rk, Hk)
- 4.5.2 Invariants and equivariants for Hk
- 4.5.3 Cubic equivariants for Hk
- 4.5.4 Bifurcation for cubic families
- 4.5.5 Subgroups of Hk
- 4.5.6 Some subgroups of the symmetric group
- 4.5.7 A big family of counterexamples to the MISC
- 4.5.8 Examples where P3G (Rk, Rk) = P3H k (Rk, Rk)
- 4.5.9 Stable solution branches of maximal index and trivial isotropy
- 4.5.10 An example with applications to phase transitions
- 4.6 Phase vector field and maps of hyperbolic type
- 4.6.1 Cubic polynomial maps
- 4.6.2 Phase vector field
- 4.6.3 Normalized families
- 4.6.4 Maps of hyperbolic type
- 4.6.5 The branching pattern of JQ
- 4.7 Transforming to generalized spherical polar coordinates
- 4.7.1 Preliminaries
- 4.7.2 Polar blowing-up
- 4.8 d(V, G)-deter.