Cargando…

Higher Topos Theory (AM-170).

Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton University Press 2009.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Contents
  • Preface
  • Chapter 1. An Overview of Higher Category Theory
  • 1.1 Foundations for Higher Category Theory
  • 1.2 The Language of Higher Category Theory
  • Chapter 2. Fibrations of Simplicial Sets
  • 2.1 Left Fibrations
  • 2.2 Simplicial Categories and -Categories
  • 2.3 Inner Fibrations
  • 2.4 Cartesian Fibrations
  • Chapter 3. The -Category of -Categories
  • 3.1 Marked Simplicial Sets
  • 3.2 Straightening and Unstraightening
  • 3.3 Applications
  • Chapter 4. Limits and Colimits
  • 4.1 Cofinality
  • 4.2 Techniques for Computing Colimits
  • 4.3 Kan Extensions
  • 4.4 Examples of Colimits
  • Chapter 5. Presentable and Accessible -Categories
  • 5.1 -Categories of Presheaves
  • 5.2 Adjoint Functors
  • 5.3 -Categories of Inductive Limits
  • 5.4 Accessible -Categories
  • 5.5 Presentable -Categories
  • Chapter 6.-Topoi
  • 6.1 -Topoi: Definitions and Characterizations
  • 6.2 Constructions of -Topoi
  • 6.3 The -Category of -Topoi
  • 6.4 n-Topoi
  • 6.5 Homotopy Theory in an -Topos
  • Chapter 7. Higher Topos Theory in Topology
  • 7.1 Paracompact Spaces
  • 7.2 Dimension Theory
  • 7.3 The Proper Base Change Theorem
  • Appendix
  • A.1 Category Theory
  • A.2 Model Categories
  • A.3 Simplicial Categories
  • Bibliography
  • General Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • W
  • Y
  • Index of Notation
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • X.