Higher Topos Theory (AM-170).
Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of th...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton University Press
2009.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- Chapter 1. An Overview of Higher Category Theory
- 1.1 Foundations for Higher Category Theory
- 1.2 The Language of Higher Category Theory
- Chapter 2. Fibrations of Simplicial Sets
- 2.1 Left Fibrations
- 2.2 Simplicial Categories and -Categories
- 2.3 Inner Fibrations
- 2.4 Cartesian Fibrations
- Chapter 3. The -Category of -Categories
- 3.1 Marked Simplicial Sets
- 3.2 Straightening and Unstraightening
- 3.3 Applications
- Chapter 4. Limits and Colimits
- 4.1 Cofinality
- 4.2 Techniques for Computing Colimits
- 4.3 Kan Extensions
- 4.4 Examples of Colimits
- Chapter 5. Presentable and Accessible -Categories
- 5.1 -Categories of Presheaves
- 5.2 Adjoint Functors
- 5.3 -Categories of Inductive Limits
- 5.4 Accessible -Categories
- 5.5 Presentable -Categories
- Chapter 6.-Topoi
- 6.1 -Topoi: Definitions and Characterizations
- 6.2 Constructions of -Topoi
- 6.3 The -Category of -Topoi
- 6.4 n-Topoi
- 6.5 Homotopy Theory in an -Topos
- Chapter 7. Higher Topos Theory in Topology
- 7.1 Paracompact Spaces
- 7.2 Dimension Theory
- 7.3 The Proper Base Change Theorem
- Appendix
- A.1 Category Theory
- A.2 Model Categories
- A.3 Simplicial Categories
- Bibliography
- General Index
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- W
- Y
- Index of Notation
- A
- B
- C
- D
- E
- F
- G
- H
- I
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- X.