Cargando…

Functional Estimation For Density, Regression Models And Processes.

This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: WSPC 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 EBOOKCENTRAL_ocn748215486
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|---uuuuu
008 110823s2011 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d EBLCP  |d MHW  |d MEAUC  |d DEBSZ  |d OCLCQ  |d ZCU  |d OCLCQ  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 816858969 
020 |a 1283235048 
020 |a 9781283235044 
020 |a 9789814343749 
020 |a 9814343749 
029 1 |a AU@  |b 000052893959 
029 1 |a DEBBG  |b BV044161547 
029 1 |a DEBSZ  |b 39392274X 
029 1 |a DEBSZ  |b 454996543 
035 |a (OCoLC)748215486  |z (OCoLC)816858969 
050 4 |a QA276 
072 7 |a PBT  |2 bicssc 
082 0 4 |a 519.544 
049 |a UAMI 
245 0 0 |a Functional Estimation For Density, Regression Models And Processes. 
260 |b WSPC  |c 2011. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book. 
505 0 |a Preface; Contents; 1. Introduction; 1.1 Estimation of a density; 1.2 Estimation of a regression curve; 1.3 Estimation of functionals of processes; 1.4 Content of the book; 2. Kernel estimator of a density; 2.1 Introduction; 2.2 Risks and optimal bandwidths for the kernel estimator; 2.3 Weak convergence; 2.4 Minimax and histogram estimators; 2.5 Estimation of functionals of a density; 2.6 Density of absolutely continuous distributions; 2.7 Hellinger distance between a density and its estimator; 2.8 Estimation of the density under right-censoring. 
505 8 |a 2.9 Estimation of the density of left-censored variables2.10 Kernel estimator for the density of a process; 2.11 Exercises; 3. Kernel estimator of a regression function; 3.1 Introduction and notation; 3.2 Risks and convergence rates for the estimator; 3.3 Optimal bandwidths; 3.4 Weak convergence of the estimator; 3.5 Estimation of a regression curve by local polynomials; 3.6 Estimation in regression models with functional variance; 3.7 Estimation of the mode of a regression function; 3.8 Estimation of a regression function under censoring; 3.9 Proportional odds model. 
505 8 |a 3.10 Estimation for the regression function of processes3.11 Exercises; 4. Limits for the varying bandwidths estimators; 4.1 Introduction; 4.2 Estimation of densities; 4.3 Estimation of regression functions; 4.4 Estimation for processes; 4.5 Exercises; 5. Nonparametric estimation of quantiles; 5.1 Introduction; 5.2 Asymptotics for the quantile processes; 5.3 Bandwidth selection; 5.4 Estimation of the conditional density of Y given X; 5.5 Estimation of conditional quantiles for processes; 5.6 Inverse of a regression function; 5.7 Quantile function of right-censored variables. 
505 8 |a 5.8 Conditional quantiles with variable bandwidth5.9 Exercises; 6. Nonparametric estimation of intensities for stochastic processes; 6.1 Introduction; 6.2 Risks and convergences for estimators of the intensity; 6.2.1 Kernel estimator of the intensity; 6.2.2 Histogram estimator of the intensity; 6.3 Risks and convergences for multiplicative intensities; 6.3.1 Models with nonparametric regression functions; 6.3.2 Models with parametric regression functions; 6.4 Histograms for intensity and regression functions; 6.5 Estimation of the density of duration excess. 
505 8 |a 6.6 Estimators for processes on increasing intervals6.7 Models with varying intensity or regression coefficients; 6.8 Progressive censoring of a random time sequence; 6.9 Exercises; 7. Estimation in semi-parametric regression models; 7.1 Introduction; 7.2 Convergence of the estimators; 7.3 Nonparametric regression with a change of variables; 7.4 Exercises; 8. Diffusion processes; 8.1 Introduction; 8.2 Estimation for continuous diffusions by discretization; 8.3 Estimation for continuous diff usion processes; 8.4 Estimation of discretely observed diffusions with jumps. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical statistics. 
650 0 |a Econometrics. 
650 0 |a Estimation theory. 
650 6 |a Économétrie. 
650 6 |a Théorie de l'estimation. 
650 7 |a Econometrics  |2 fast 
650 7 |a Estimation theory  |2 fast 
650 7 |a Mathematical statistics  |2 fast 
655 4 |a Electronic resource. 
720 |a Pons Odile. 
758 |i has work:  |a Functional estimation for density, regression models and processes (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH3pb3b3t4rhKJgKCQ4tqP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=840574  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL840574 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 323504 
994 |a 92  |b IZTAP