Computational Analysis Of The Human Eye With Applications.
Advances in semi-automated high-throughput image data collection routines, coupled with a decline in storage costs and an increase in high-performance computing solutions have led to an exponential surge in data collected by biomedical scientists and medical practitioners. Interpreting this raw data...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
WSPC
2011.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. The Biological and Computational Bases of Vision Hilary W. Thompson; 1.1. Introduction to the Eye; 1.2. The Anatomy of the Human Visual System; 1.3. Neurons; 1.4. Synapses; 1.5. Vision
- Sensory Transduction; 1.6. Retinal Processing; 1.7. Visual Processing in the Brain; 1.8. Biological Vision and Computer Vision Algorithms; References; Chapter 2. Computational Methods for Feature Detection in Optical Images Michael Dessauer and Sumeet Dua; 2.1. Introduction to Computational Methods for Feature Detection; 2.2. Preprocessing Methods for Retinal Images.
- 2.2.1. Illumination Effect Reduction2.2.1.1. Non-linear brightness transform; 2.2.1.2. Background identification methods; 2.2.2. Image Normalization and Enhancement; 2.2.2.1. Color channel transformations; 2.2.2.2. Image smoothing through spatial filtering; 2.2.2.3. Local adaptive contrast enhancement; 2.2.2.4. Histogram transformations; 2.3. Segmentation Methods for Retinal Anatomy Detection and Localization; 2.3.1. A Boundary Detection Methods; 2.3.1.1. First-order difference operators; 2.3.1.2. Second-order boundary detection; 2.3.1.3. Canny edge detection.
- 2.3.2. Edge Linkage Methods for Boundary Detection2.3.2.1. Local neighborhood gradient thresholding; 2.3.2.2. Morphological operations for edge link enhancement; 2.3.2.3. Hough transform for edge linking; 2.3.3. Thresholding for Image Segmentation; 2.3.3.1. Segmentation with a single threshold; 2.3.3.2. Multi-level thresholding; 2.3.3.3. Windowed thresholding; 2.3.4. Region-Based Methods for Image Segmentation; 2.3.4.1. Region growing; 2.3.4.2. Watershed segmentation; 2.3.4.3. Matched filter segmentation; 2.4. Feature Representation Methods for Classification; 2.4.1. Statistical Features.
- 2.4.1.1. Geometric descriptors2.4.1.2. Texture features; 2.4.1.3. Invariant moments; 2.4.2. Data Transformations; 2.4.2.1. Fourier descriptors; 2.4.2.2. Principal component analysis (PCA); 2.4.3. Multiscale Features; 2.4.3.1. Wavelet transform; 2.4.3.2. Scale-space methods for feature extraction; 2.5. Summary; References; Chapter 3. Computational Decision Support Systems and Diagnostic Tools in Ophthalmology: A Schematic Survey Sumeet Dua and Mohit Jain; 3.1. Evidence- and Value-Based Medicine; 3.1.1. EBM Process; 3.1.2. Evidence-Based Medical Issues; 3.1.3. Value-Based Evidence.
- 3.2. Economic Evaluation of the Prevention and Treatment of Vision-Related Diseases3.2.1. Economic Evaluation; 3.2.2. Decision Analysis Method; 3.2.3. Advantages of Decision Analysis; 3.2.4. Perspective in Decision Analysis; 3.2.5. Decision Tree in Decision Analysis; 3.3. Use of Information Technologies for Diagnosis in Ophthalmology; 3.3.1. Data Mining in Ophthalmology; 3.3.2. Graphical User Interface; 3.4. Role of Computational System in Curing Disease of an Eye; 3.4.1. Computational Decision Support System: Diabetic Retinopathy; 3.4.1.1. Wavelet-based neural network23.