Cargando…

Artificial neural networks in biological and environmental analysis /

"Drawing on the experience and knowledge of a practicing professional, this book provides a comprehensive introduction and practical guide to the development, optimization, and application of artificial neural networks (ANNs) in modern environmental and biological analysis. Based on our knowled...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hanrahan, Grady
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, ©2011.
Colección:Analytical chemistry series (CRC Press)
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Introduction
  • 1.1. Artificial Intelligence: Competing Approaches or Hybrid Intelligent Systems?
  • 1.2. Neural Networks: An Introduction and Brief History
  • 1.2.1. The Biological Model
  • 1.2.2. The Artificial Neuron Model
  • 1.3. Neural Network Application Areas
  • 1.4. Concluding Remarks
  • References
  • ch. 2 Network Architectures
  • 2.1. Neural Network Connectivity and Layer Arrangement
  • 2.2. Feedforward Neural Networks
  • 2.2.1. The Perceptron Revisited
  • 2.2.2. Radial Basis Function Neural Networks
  • 2.3. Recurrent Neural Networks
  • 2.3.1. The Hopfield Network
  • 2.3.2. Kohonen's Self-Organizing Map
  • 2.4. Concluding Remarks
  • References
  • ch. 3 Model Design and Selection Considerations
  • 3.1. In Search of the Appropriate Model
  • 3.2. Data Acquisition.
  • 3.3. Data Preprocessing and Transformation Processes
  • 3.3.1. Handling Missing Values and Outliers
  • 3.3.2. Linear Scaling
  • 3.3.3. Autoscaling
  • 3.3.4. Logarithmic Scaling
  • 3.3.5. Principal Component Analysis
  • 3.3.6. Wavelet Transform Preprocessing
  • 3.4. Feature Selection
  • 3.5. Data Subset Selection
  • 3.5.1. Data Partitioning
  • 3.5.2. Dealing with Limited Data
  • 3.6. Neural Network Training
  • 3.6.1. Learning Rules
  • 3.6.2. Supervised Learning
  • 3.6.2.1. The Perceptron Learning Rule
  • 3.6.2.2. Gradient Descent and Back-Propagation
  • 3.6.2.3. The Delta Learning Rule
  • 3.6.2.4. Back-Propagation Learning Algorithm
  • 3.6.3. Unsupervised Learning and Self-Organization
  • 3.6.4. The Self Organizing Map
  • 3.6.5. Bayesian Learning Considerations
  • 3.7. Model Selection
  • 3.8. Model Validation and Sensitivity Analysis
  • 3.9. Concluding Remarks
  • References.
  • Ch. 4 Intelligent Neural Network Systems and Evolutionary Learning
  • 4.1. Hybrid Neural Systems
  • 4.2. An Introduction to Genetic Algorithms
  • 4.2.1. Initiation and Encoding
  • 4.2.1.1. Binary Encoding
  • 4.2.2. Fitness and Objective Function Evaluation
  • 4.2.3. Selection
  • 4.2.4. Crossover
  • 4.2.5. Mutation
  • 4.3. An Introduction to Fuzzy Concepts and Fuzzy Inference Systems
  • 4.3.1. Fuzzy Sets
  • 4.3.2. Fuzzy Inference and Function Approximation
  • 4.3.3. Fuzzy Indices and Evaluation of Environmental Conditions
  • 4.4. The Neural-Fuzzy Approach
  • 4.4.1. Genetic Algorithms in Designing Fuzzy Rule-Based Systems
  • 4.5. Hybrid Neural Network-Genetic Algorithm Approach
  • 4.6. Concluding Remarks
  • References
  • ch. 5 Applications in Biological and Biomedical Analysis
  • 5.1. Introduction
  • 5.2. Applications
  • 5.2.1. Enzymatic Activity
  • 5.2.2. Quantitative Structure-Activity Relationship (QSAR).
  • 5.2.3. Psychological and Physical Treatment of Maladies
  • 5.2.4. Prediction of Peptide Separation
  • 5.3. Concluding Remarks
  • References
  • ch. 6 Applications in Environmental Analysis
  • 6.1. Introduction
  • 6.2. Applications
  • 6.2.1. Aquatic Modeling and Watershed Processes
  • 6.2.2. Endocrine Disruptors
  • 6.2.3. Ecotoxicity and Sediment Quality
  • 6.2.4. Modeling Pollution Emission Processes
  • 6.2.5. Partition Coefficient Prediction
  • 6.2.6. Neural Networks and the Evolution of Environmental Change / Kudlak
  • 6.2.6.1. Studies in the Lithosphere
  • 6.2.6.2. Studies in the Atmosphere
  • 6.2.6.3. Studies in the Hydrosphere
  • 6.2.6.4. Studies in the Biosphere
  • 6.2.6.5. Environmental Risk Assessment
  • 6.3. Concluding Remarks
  • References.