Cargando…

Artificial neural networks in biological and environmental analysis /

"Drawing on the experience and knowledge of a practicing professional, this book provides a comprehensive introduction and practical guide to the development, optimization, and application of artificial neural networks (ANNs) in modern environmental and biological analysis. Based on our knowled...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hanrahan, Grady
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, ©2011.
Colección:Analytical chemistry series (CRC Press)
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn746925664
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 110816s2011 flua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d EBLCP  |d GZM  |d OCLCQ  |d CRCPR  |d OCLCQ  |d DEBSZ  |d E7B  |d I9W  |d NLE  |d OCLCF  |d S3O  |d OCLCQ  |d MERUC  |d UAB  |d OCLCQ  |d ERL  |d OCL  |d OCLCQ  |d UKMGB  |d WYU  |d VT2  |d YDX  |d TYFRS  |d LEAUB  |d OCLCQ  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB7A9248  |2 bnb 
016 7 |a 018390442  |2 Uk 
019 |a 706920144  |a 708567799  |a 860500479  |a 1031055098  |a 1065872866  |a 1077294646  |a 1084421112  |a 1129344032  |a 1228589585 
020 |a 9781439812594  |q (electronic bk.) 
020 |a 1439812594  |q (electronic bk.) 
020 |z 9781439812587 
020 |z 1439812586 
029 1 |a AU@  |b 000066768027 
029 1 |a DEBSZ  |b 372694470 
029 1 |a DEBSZ  |b 43094991X 
029 1 |a DEBSZ  |b 449225852 
029 1 |a UKMGB  |b 018390442 
035 |a (OCoLC)746925664  |z (OCoLC)706920144  |z (OCoLC)708567799  |z (OCoLC)860500479  |z (OCoLC)1031055098  |z (OCoLC)1065872866  |z (OCoLC)1077294646  |z (OCoLC)1084421112  |z (OCoLC)1129344032  |z (OCoLC)1228589585 
037 |a TANDF_205639  |b Ingram Content Group 
050 4 |a QH324.25  |b .H36 2011eb 
072 7 |a NAT  |x 027000  |2 bisacsh 
072 7 |a SCI  |x 008000  |2 bisacsh 
072 7 |a SCI  |x 086000  |2 bisacsh 
082 0 4 |a 570.285/63  |2 22 
084 |a MAT029000  |a SCI013000  |a SCI013010  |2 bisacsh 
049 |a UAMI 
100 1 |a Hanrahan, Grady. 
245 1 0 |a Artificial neural networks in biological and environmental analysis /  |c Grady Hanrahan. 
260 |a Boca Raton, FL :  |b CRC Press,  |c ©2011. 
300 |a 1 online resource (xxii, 188 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Analytical chemistry series 
520 |a "Drawing on the experience and knowledge of a practicing professional, this book provides a comprehensive introduction and practical guide to the development, optimization, and application of artificial neural networks (ANNs) in modern environmental and biological analysis. Based on our knowledge of the functioning human brain, ANNs serve as a modern paradigm for computing. Presenting basic principles of ANNs together with simulated biological and environmental data sets and real applications in the field, this volume helps scientists comprehend the power of the ANN model to explain physical concepts and demonstrate complex natural processes"--Provided by publisher 
520 |a "The cornerstones of research into prospective tools of artificial intelligence originate from knowledge of the functioning brain. Like most transforming scientific endeavors, this field-- once viewed with speculation and doubt--has had profound impacts in helping investigators elucidate complex biological, chemical, and environmental processes. Such efforts have been catalyzed by the upsurge in computational power and availability, with the co-evolution of software, algorithms, and methodologies contributing significantly to this momentum. Whether or not the computational power of such techniques is sufficient for the design and construction of truly intelligent neural systems is of continued debate. In writing Artificial Neural Networks in Biological and Environmental Analysis, my aim was to provide in-depth and timely perspectives on the fundamental, technological, and applied aspects of computational neural networks. By presenting basic principles of neural networks together with real applications in the field, I seek to stimulate communication and partnership among scientists in the fields as diverse as biology, chemistry, mathematics, medicine, and environmental science. This interdisciplinary discourse is essential not only for the success of independent and collaborative research and teaching programs, but also for the continued acquiescence of the use of neural network tools in scientific inquiry"--Provided by publisher 
504 |a Includes bibliographical references and index. 
505 0 0 |g Machine generated contents note:  |g ch. 1  |t Introduction --  |g 1.1.  |t Artificial Intelligence: Competing Approaches or Hybrid Intelligent Systems? --  |g 1.2.  |t Neural Networks: An Introduction and Brief History --  |g 1.2.1.  |t The Biological Model --  |g 1.2.2.  |t The Artificial Neuron Model --  |g 1.3.  |t Neural Network Application Areas --  |g 1.4.  |t Concluding Remarks --  |t References --  |g ch. 2  |t Network Architectures --  |g 2.1.  |t Neural Network Connectivity and Layer Arrangement --  |g 2.2.  |t Feedforward Neural Networks --  |g 2.2.1.  |t The Perceptron Revisited --  |g 2.2.2.  |t Radial Basis Function Neural Networks --  |g 2.3.  |t Recurrent Neural Networks --  |g 2.3.1.  |t The Hopfield Network --  |g 2.3.2.  |t Kohonen's Self-Organizing Map --  |g 2.4.  |t Concluding Remarks --  |t References --  |g ch. 3  |t Model Design and Selection Considerations --  |g 3.1.  |t In Search of the Appropriate Model --  |g 3.2.  |t Data Acquisition. 
505 0 0 |g 3.3.  |t Data Preprocessing and Transformation Processes --  |g 3.3.1.  |t Handling Missing Values and Outliers --  |g 3.3.2.  |t Linear Scaling --  |g 3.3.3.  |t Autoscaling --  |g 3.3.4.  |t Logarithmic Scaling --  |g 3.3.5.  |t Principal Component Analysis --  |g 3.3.6.  |t Wavelet Transform Preprocessing --  |g 3.4.  |t Feature Selection --  |g 3.5.  |t Data Subset Selection --  |g 3.5.1.  |t Data Partitioning --  |g 3.5.2.  |t Dealing with Limited Data --  |g 3.6.  |t Neural Network Training --  |g 3.6.1.  |t Learning Rules --  |g 3.6.2.  |t Supervised Learning --  |g 3.6.2.1.  |t The Perceptron Learning Rule --  |g 3.6.2.2.  |t Gradient Descent and Back-Propagation --  |g 3.6.2.3.  |t The Delta Learning Rule --  |g 3.6.2.4.  |t Back-Propagation Learning Algorithm --  |g 3.6.3.  |t Unsupervised Learning and Self-Organization --  |g 3.6.4.  |t The Self Organizing Map --  |g 3.6.5.  |t Bayesian Learning Considerations --  |g 3.7.  |t Model Selection --  |g 3.8.  |t Model Validation and Sensitivity Analysis --  |g 3.9.  |t Concluding Remarks --  |t References. 
505 0 0 |g Ch. 4  |t Intelligent Neural Network Systems and Evolutionary Learning --  |g 4.1.  |t Hybrid Neural Systems --  |g 4.2.  |t An Introduction to Genetic Algorithms --  |g 4.2.1.  |t Initiation and Encoding --  |g 4.2.1.1.  |t Binary Encoding --  |g 4.2.2.  |t Fitness and Objective Function Evaluation --  |g 4.2.3.  |t Selection --  |g 4.2.4.  |t Crossover --  |g 4.2.5.  |t Mutation --  |g 4.3.  |t An Introduction to Fuzzy Concepts and Fuzzy Inference Systems --  |g 4.3.1.  |t Fuzzy Sets --  |g 4.3.2.  |t Fuzzy Inference and Function Approximation --  |g 4.3.3.  |t Fuzzy Indices and Evaluation of Environmental Conditions --  |g 4.4.  |t The Neural-Fuzzy Approach --  |g 4.4.1.  |t Genetic Algorithms in Designing Fuzzy Rule-Based Systems --  |g 4.5.  |t Hybrid Neural Network-Genetic Algorithm Approach --  |g 4.6.  |t Concluding Remarks --  |t References --  |g ch. 5  |t Applications in Biological and Biomedical Analysis --  |g 5.1.  |t Introduction --  |g 5.2.  |t Applications --  |g 5.2.1.  |t Enzymatic Activity --  |g 5.2.2.  |t Quantitative Structure-Activity Relationship (QSAR). 
505 0 0 |g 5.2.3.  |t Psychological and Physical Treatment of Maladies --  |g 5.2.4.  |t Prediction of Peptide Separation --  |g 5.3.  |t Concluding Remarks --  |t References --  |g ch. 6  |t Applications in Environmental Analysis --  |g 6.1.  |t Introduction --  |g 6.2.  |t Applications --  |g 6.2.1.  |t Aquatic Modeling and Watershed Processes --  |g 6.2.2.  |t Endocrine Disruptors --  |g 6.2.3.  |t Ecotoxicity and Sediment Quality --  |g 6.2.4.  |t Modeling Pollution Emission Processes --  |g 6.2.5.  |t Partition Coefficient Prediction --  |g 6.2.6.  |t Neural Networks and the Evolution of Environmental Change /  |r Kudlak --  |g 6.2.6.1.  |t Studies in the Lithosphere --  |g 6.2.6.2.  |t Studies in the Atmosphere --  |g 6.2.6.3.  |t Studies in the Hydrosphere --  |g 6.2.6.4.  |t Studies in the Biosphere --  |g 6.2.6.5.  |t Environmental Risk Assessment --  |g 6.3.  |t Concluding Remarks --  |t References. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Artificial intelligence  |x Biological applications. 
650 0 |a Biology  |x Data processing. 
650 0 |a Environmental engineering  |x Data processing. 
650 0 |a Neural networks (Computer science)  |x Scientific applications. 
650 6 |a Intelligence artificielle  |x Applications biologiques. 
650 6 |a Biologie  |x Informatique. 
650 6 |a Technique de l'environnement  |x Informatique. 
650 6 |a Réseaux neuronaux (Informatique)  |x Applications scientifiques. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Chemistry  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Chemistry  |x Analytic.  |2 bisacsh 
650 7 |a NATURE  |x Reference.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Biology.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence  |x Biological applications  |2 fast 
650 7 |a Biology  |x Data processing  |2 fast 
650 7 |a Environmental engineering  |x Data processing  |2 fast 
758 |i has work:  |a Artificial neural networks in biological and environmental analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGMgGvcdqDKYQH7GVfyRPP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Hanrahan, Grady.  |t Artificial neural networks in biological and environmental analysis.  |d Boca Raton, FL : CRC Press, ©2011  |z 9781439812587  |w (DLC) 2010038461  |w (OCoLC)667210573 
830 0 |a Analytical chemistry series (CRC Press) 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=665580  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24133379 
938 |a EBL - Ebook Library  |b EBLB  |n EBL665580 
938 |a ebrary  |b EBRY  |n ebr10446295 
938 |a EBSCOhost  |b EBSC  |n 376302 
938 |a Taylor & Francis  |b TAFR  |n CRC0KE10591PDF 
938 |a Taylor & Francis  |b TAFR  |n 9780429148927 
938 |a YBP Library Services  |b YANK  |n 15921622 
938 |a YBP Library Services  |b YANK  |n 3502410 
994 |a 92  |b IZTAP