Discriminant Analysis and Clustering.
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
National Academies Press
1988.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- COVER
- COPYRIGHT
- PREFACE
- TABLE OF CONTENTS
- CHAPTER 1 INTRODUCTION
- CHAPTER 2 METHODS
- 2.1 INTRODUCTION
- 2.2 METHODS OF DISCRIMINANT ANALYSIS
- 2.2.1 General Remarks
- 2.2.2 Classical Two-group Linear Discriminant Analysis
- 2.2.3 Classification Into One of Several Populations
- 2.2.4 Heterogeneous Covariance Matrices Case
- 2.2.5 Two-group Classification by Logistic Regression
- 2.2.6 Kernel and Nearest Neighbor Methods
- 2.2.7 Classification Trees
- 2.3 METHODS OF CLUSTER ANALYSIS
- 2.3.1 General Remarks
- 2.3.2 Algorithms
- 2.3.3 Perspective
- CHAPTER 3 THEORY
- 3.1 INTRODUCTION
- 3.2 THEORETICAL ISSUES IN DISCRIMINANT ANALYSIS
- 3.2.1 Introduction
- 3.2.2 The Fisher Linear Discriminant and Some of Its Children
- 3.2.3 Estimating Misclassification Costs
- 3.2.4 Nonparametric Techniques
- 3.3 STATISTICAL THEORY IN CLUSTERING
- 3.3.1 Introduction
- 3.3.2 High Density Clusters
- 3.3.3 Agglomerative Methods for High Density Clusters
- 3.3.4 Single Linkage, the Minimum Spanning Tree and Percolation
- 3.3.5 Mixtures
- 3.3.6 The Number of Clusters: Modes
- 3.3.7 The Number of Clusters: Components
- 3.3.8 Ultrametric and Evolutionary Distances
- CHAPTER 4 SOFTWARE AND ALGORITHM IMPLEMENTATION
- 4.1 INTRODUCTION
- 4.2 DISCRIMINANT ANALYSIS
- 4.2.1 Linear and Quadratic Discriminant Functions
- 4.2.2 Review of Packages
- 4.2.3 Logistic Regression
- 4.2.4 Classification Trees
- 4.3 CLUSTER ANALYSIS
- 4.3.1 Collections of Subroutines and Algorithms
- 4.3.2 Cluster Analysis Packages
- 4.3.3 Simple Cluster Analysis Programs
- 4.4 NEEDS
- CHAPTER 5 CLOSING PERSPECTIVE.