Cargando…

Berkovich, Yakov; Janko, Zvonimir.

This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible cha...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berkovich, Yakov
Otros Autores: Janko, Zvonimir
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn743693632
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 110801s2011 gw o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d MERUC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d OCLCO  |d SGP  |d OCLCQ  |d OCLCO 
020 |a 9783110254488 
020 |a 3110254484 
029 1 |a DEBBG  |b BV044156514 
029 1 |a DEBSZ  |b 397100647 
029 1 |a DEBSZ  |b 431017077 
035 |a (OCoLC)743693632 
050 4 |a QA177 .B48 2011 
082 0 4 |a 512/.23 
049 |a UAMI 
100 1 |a Berkovich, Yakov. 
245 1 0 |a Berkovich, Yakov; Janko, Zvonimir. 
260 |a Berlin :  |b De Gruyter,  |c 2011. 
300 |a 1 online resource (668 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 0 |t Frontmatter --  |t Contents --  |t List of definitions and notations --  |t Preface --  |t Prerequisites from Volumes 1 and 2 --  |t §93 Nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4 --  |t §94 Nonabelian 2-groups all of whose minimal nonabelian subgroups are nonmetacyclic and have exponent 4 --  |t §95 Nonabelian 2-groups of exponent 2e which have no minimal nonabelian subgroups of exponent 2e --  |t §96 Groups with at most two conjugate classes of nonnormal subgroups --  |t §97 p-groups in which some subgroups are generated by elements of order p --  |t §98 Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic to M2n+1, n 3 fixed --  |t §99 2-groups with sectional rank at most 4 --  |t §100 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian --  |t §101 p-groups G with p > 2 and d(G) = 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian --  |t §102 p-groups G with p > 2 and d(G) > 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian --  |t §103 Some results of Jonah and Konvisser --  |t §104 Degrees of irreducible characters of p-groups associated with finite algebras --  |t §105 On some special p-groups --  |t §106 On maximal subgroups of two-generator 2-groups --  |t §107 Ranks of maximal subgroups of nonmetacyclic two-generator 2-groups --  |t §108 p-groups with few conjugate classes of minimal nonabelian subgroups --  |t §109 On p-groups with metacyclic maximal subgroup without cyclic subgroup of index p --  |t §110 Equilibrated p-groups --  |t §111 Characterization of abelian and minimal nonabelian groups --  |t §112 Non-Dedekindian p-groups all of whose nonnormal subgroups have the same order --  |t §113 The class of 2-groups in §70 is not bounded --  |t §114 Further counting theorems --  |t §115 Finite p-groups all of whose maximal subgroups except one are extraspecial --  |t §116 Groups covered by few proper subgroups --  |t §117 2-groups all of whose nonnormal subgroups are either cyclic or of maximal class --  |t §118 Review of characterizations of p-groups with various minimal nonabelian subgroups --  |t §119 Review of characterizations of p-groups of maximal class --  |t §120 Nonabelian 2-groups such that any two distinct minimal nonabelian subgroups have cyclic intersection --  |t §121 p-groups of breadth 2 --  |t §122 p-groups all of whose subgroups have normalizers of index at most p --  |t §123 Subgroups of finite groups generated by all elements in two shortest conjugacy classes --  |t §124 The number of subgroups of given order in a metacyclic p-group --  |t §125 p-groups G containing a maximal subgroup H all of whose subgroups are G-invariant --  |t §126 The existence of p-groups G1 G such that Aut(G1) Aut(G) --  |t §127 On 2-groups containing a maximal elementary abelian subgroup of order 4 --  |t §128 The commutator subgroup of p-groups with the subgroup breadth 1 --  |t §129 On two-generator 2-groups with exactly one maximal subgroup which is not two-generator --  |t §130 Soft subgroups of p-groups --  |t §131 p-groups with a 2-uniserial subgroup of order p --  |t §132 On centralizers of elements in p-groups --  |t §133 Class and breadth of a p-group --  |t §134 On p-groups with maximal elementary abelian subgroup of order p2 --  |t §135 Finite p-groups generated by certain minimal nonabelian subgroups --  |t §136 p-groups in which certain proper nonabelian subgroups are two-generator --  |t §137 p-groups all of whose proper subgroups have its derived subgroup of order at most p --  |t §138 p-groups all of whose nonnormal subgroups have the smallest possible normalizer --  |t §139 p-groups with a noncyclic commutator group all of whose proper subgroups have a cyclic commutator group --  |t §140 Power automorphisms and the norm of a p-group --  |t §141 Nonabelian p-groups having exactly one maximal subgroup with a noncyclic center --  |t §142 Nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian --  |t §143 Alternate proof of the Reinhold Baer theorem on 2-groups with nonabelian norm --  |t §144 p-groups with small normal closures of all cyclic subgroups --  |t Appendix 27 Wreathed 2-groups --  |t Appendix 28 Nilpotent subgroups --  |t Appendix 29 Intersections of subgroups --  |t Appendix 30 Thompson's lemmas --  |t Appendix 31 Nilpotent p'-subgroups of class 2 in GL(n, p) --  |t Appendix 32 On abelian subgroups of given exponent and small index --  |t Appendix 33 On Hadamard 2-groups --  |t Appendix 34 Isaacs-Passman's theorem on character degrees --  |t Appendix 35 Groups of Frattini class 2 --  |t Appendix 36 Hurwitz' theorem on the composition of quadratic forms --  |t Appendix 37 On generalized Dedekindian groups --  |t Appendix 38 Some results of Blackburn and Macdonald --  |t Appendix 39 Some consequences of Frobenius' normal p-complement theorem --  |t Appendix 40 Varia --  |t Appendix 41 Nonabelian 2-groups all of whose minimal nonabelian subgroups have cyclic centralizers --  |t Appendix 42 On lattice isomorphisms of p-groups of maximal class --  |t Appendix 43 Alternate proofs of two classical theorems on solvable groups and some related results --  |t Appendix 44 Some of Freiman's results on finite subsets of groups with small doubling --  |t Research problems and themes III --  |t Author index --  |t Subject index 
520 |a This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Finite groups. 
650 0 |a Group theory. 
650 6 |a Groupes finis. 
650 6 |a Théorie des groupes. 
650 7 |a Finite groups  |2 fast 
650 7 |a Group theory  |2 fast 
700 1 |a Janko, Zvonimir. 
776 0 8 |i Print version:  |a Berkovich, Yakov.  |t Berkovich, Yakov; Janko, Zvonimir: Groups of Prime Power Order. Volume 3.  |d Berlin : De Gruyter, ©2011  |z 9783112189092 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=737006  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL737006 
938 |a YBP Library Services  |b YANK  |n 6928023 
994 |a 92  |b IZTAP