|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBOOKCENTRAL_ocn742513505 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
100611s2011 maua ob 001 0 eng d |
010 |
|
|
|z 2010022682
|
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCQ
|d YDXCP
|d OUP
|d DEBSZ
|d OCLCO
|d OCLCQ
|d N$T
|d B24X7
|d OCLCF
|d OCLCQ
|d EBLCP
|d OCLCQ
|d AZK
|d LOA
|d COCUF
|d MOR
|d PIFAG
|d ZCU
|d LIV
|d MERUC
|d OCLCQ
|d K6U
|d U3W
|d UUM
|d STF
|d WRM
|d NRAMU
|d ICG
|d INT
|d VT2
|d COO
|d OCLCQ
|d WYU
|d OCLCQ
|d DKC
|d OCLCQ
|d HS0
|d UWK
|d OCLCQ
|d YDX
|d OCLCO
|d UKCRE
|d OCLCQ
|d RC0
|d VLY
|d OCLCQ
|d SFB
|d OCLCO
|d OCLCQ
|d Q2U
|d INARC
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 961634245
|a 962613211
|a 965993223
|a 988520076
|a 991919925
|a 1037915644
|a 1038582558
|a 1045577623
|a 1055399223
|a 1066581588
|a 1081227967
|a 1109037358
|a 1110259920
|a 1149926828
|a 1153463907
|a 1162102036
|a 1227633960
|a 1228596942
|a 1290047922
|a 1316499957
|a 1328604793
|a 1397458710
|
020 |
|
|
|a 9780262295390
|q (electronic bk.)
|
020 |
|
|
|a 0262295393
|q (electronic bk.)
|
020 |
|
|
|a 0262295067
|
020 |
|
|
|a 9780262295062
|
020 |
|
|
|z 9780262015066
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 0262015064
|q (hardcover ;
|q alk. paper)
|
029 |
1 |
|
|a AU@
|b 000048044620
|
029 |
1 |
|
|a DEBBG
|b BV044105552
|
029 |
1 |
|
|a DEBSZ
|b 372819222
|
035 |
|
|
|a (OCoLC)742513505
|z (OCoLC)961634245
|z (OCoLC)962613211
|z (OCoLC)965993223
|z (OCoLC)988520076
|z (OCoLC)991919925
|z (OCoLC)1037915644
|z (OCoLC)1038582558
|z (OCoLC)1045577623
|z (OCoLC)1055399223
|z (OCoLC)1066581588
|z (OCoLC)1081227967
|z (OCoLC)1109037358
|z (OCoLC)1110259920
|z (OCoLC)1149926828
|z (OCoLC)1153463907
|z (OCoLC)1162102036
|z (OCoLC)1227633960
|z (OCoLC)1228596942
|z (OCoLC)1290047922
|z (OCoLC)1316499957
|z (OCoLC)1328604793
|z (OCoLC)1397458710
|
050 |
|
4 |
|a QA76.889
|b .R54 2011eb
|
072 |
|
7 |
|a COM
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 004.1
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Rieffel, Eleanor,
|d 1965-
|1 https://id.oclc.org/worldcat/entity/E39PBJxWWM8Hykr4GrVpbdBMfq
|
245 |
1 |
0 |
|a Quantum computing :
|b a gentle introduction /
|c Eleanor Rieffel and Wolfgang Polak.
|
260 |
|
|
|a Cambridge, Mass. :
|b MIT Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (xiii, 372 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Scientific and engineering computation
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g 1.
|t Introduction --
|g I.
|t QUANTUM BUILDING BLOCKS --
|g 2.
|t Single-Qubit Quantum Systems --
|g 2.1.
|t The Quantum Mechanics of Photon Polarization --
|g 2.1.1.
|t A Simple Experiment --
|g 2.1.2.
|t A Quantum Explanation --
|g 2.2.
|t Single Quantum Bits --
|g 2.3.
|t Single-Qubit Measurement --
|g 2.4.
|t A Quantum Key Distribution Protocol --
|g 2.5.
|t The State Space of a Single-Qubit System --
|g 2.5.1.
|t Relative Phases versus Global Phases --
|g 2.5.2.
|t Geometric Views of the State Space of a Single Qubit --
|g 2.5.3.
|t Comments on General Quantum State Spaces --
|g 2.6.
|t References --
|g 2.7.
|t Exercises --
|g 3.
|t Multiple-Qubit Systems --
|g 3.1.
|t Quantum State Spaces --
|g 3.1.1.
|t Direct Sums of Vector Spaces --
|g 3.1.2.
|t Tensor Products of Vector Spaces --
|g 3.1.3.
|t The State Space of an n-Qubit System --
|g 3.2.
|t Entangled States --
|g 3.3.
|t Basics of Multi-Qubit Measurement --
|g 3.4.
|t Quantum Key Distribution Using Entangled States --
|g 3.5.
|t References --
|g 3.6.
|t Exercises --
|g 4.
|t Measurement of Multiple-Qubit States --
|g 4.1.
|t Dirac's Bra/Ket Notation for Linear Transformations.
|
505 |
0 |
0 |
|g 4.2.
|t Projection Operators for Measurement --
|g 4.3.
|t Hermitian Operator Formalism for Measurement --
|g 4.3.1.
|t The Measurement Postulate --
|g 4.4.
|t EPR Paradox and Bell's Theorem --
|g 4.4.1.
|t Setup for Bell's Theorem --
|g 4.4.2.
|t What Quantum Mechanics Predicts --
|g 4.4.3.
|t Special Case of Bell's Theorem: What Any Local Hidden Variable Theory Predicts --
|g 4.4.4.
|t Bell's Inequality --
|g 4.5.
|t References --
|g 4.6.
|t Exercises --
|g 5.
|t Quantum State Transformations --
|g 5.1.
|t Unitary Transformations --
|g 5.1.1.
|t Impossible Transformations: The No-Cloning Principle --
|g 5.2.
|t Some Simple Quantum Gates --
|g 5.2.1.
|t The Pauli Transformations --
|g 5.2.2.
|t The Hadamard Transformation --
|g 5.2.3.
|t Multiple-Qubit Transformations from Single-Qubit Transformations --
|g 5.2.4.
|t The Controlled-not and Other Singly Controlled Gates --
|g 5.3.
|t Applications of Simple Gates --
|g 5.3.1.
|t Dense Coding --
|g 5.3.2.
|t Quantum Teleportation --
|g 5.4.
|t Realizing Unitary Transformations as Quantum Circuits --
|g 5.4.1.
|t Decomposition of Single-Qubit Transformations --
|g 5.4.2.
|t Singly-Controlled Single-Qubit Transformations --
|g 5.4.3.
|t Multiply-Controlled Single-Qubit Transformations.
|
505 |
0 |
0 |
|g 5.4.4.
|t General Unitary Transformations --
|g 5.5.
|t A Universally Approximating Set of Gates --
|g 5.6.
|t The Standard Circuit Model --
|g 5.7.
|t References --
|g 5.8.
|t Exercises --
|g 6.
|t Quantum Versions of Classical Computations --
|g 6.1.
|t From Reversible Classical Computations to Quantum Computations --
|g 6.1.1.
|t Reversible and Quantum Versions of Simple Classical Gates --
|g 6.2.
|t Reversible Implementations of Classical Circuits --
|g 6.2.1.
|t A Naive Reversible Implementation --
|g 6.2.2.
|t A General Construction --
|g 6.3.
|t A Language for Quantum Implementations --
|g 6.3.1.
|t The Basics --
|g 6.3.2.
|t Functions --
|g 6.4.
|t Some Example Programs for Arithmetic Operations --
|g 6.4.1.
|t Efficient Implementation of and --
|g 6.4.2.
|t Efficient Implementation of Multiply-Controlled Single-Qubit Transformations --
|g 6.4.3.
|t In-Place Addition --
|g 6.4.4.
|t Modular Addition --
|g 6.4.5.
|t Modular Multiplication --
|g 6.4.6.
|t Modular Exponentiation --
|g 6.5.
|t References --
|g 6.6.
|t Exercises --
|g II.
|t QUANTUM ALGORITHMS --
|g 7.
|t Introduction to Quantum Algorithms --
|g 7.1.
|t Computing with Superpositions --
|g 7.1.1.
|t The Walsh-Hadamard Transformation.
|
505 |
0 |
0 |
|g 7.1.2.
|t Quantum Parallelism --
|g 7.2.
|t Notions of Complexity --
|g 7.2.1.
|t Query Complexity --
|g 7.2.2.
|t Communication Complexity --
|g 7.3.
|t A Simple Quantum Algorithm --
|g 7.3.1.
|t Deutsch's Problem --
|g 7.4.
|t Quantum Subroutines --
|g 7.4.1.
|t The Importance of Unentangling Temporary Qubits in Quantum Subroutines --
|g 7.4.2.
|t Phase Change for a Subset of Basis Vectors --
|g 7.4.3.
|t State-Dependent Phase Shifts --
|g 7.4.4.
|t State-Dependent Single-Qubit Amplitude Shifts --
|g 7.5.
|t A Few Simple Quantum Algorithms --
|g 7.5.1.
|t Deutsch-Jozsa Problem --
|g 7.5.2.
|t Bernstein-Vazirani Problem --
|g 7.5.3.
|t Simon's Problem --
|g 7.5.4.
|t Distributed Computation --
|g 7.6.
|t Comments on Quantum Parallelism --
|g 7.7.
|t Machine Models and Complexity Classes --
|g 7.7.1.
|t Complexity Classes --
|g 7.7.2.
|t Complexity: Known Results --
|g 7.8.
|t Quantum Fourier Transformations --
|g 7.8.1.
|t The Classical Fourier Transform --
|g 7.8.2.
|t The Quantum Fourier Transform --
|g 7.8.3.
|t A Quantum Circuit for Fast Fourier Transform --
|g 7.9.
|t References --
|g 7.10.
|t Exercises --
|g 8.
|t Shor's Algorithm --
|g 8.1.
|t Classical Reduction to Period-Finding.
|
505 |
0 |
0 |
|g 8.2.
|t Shor's Factoring Algorithm --
|g 8.2.1.
|t The Quantum Core --
|g 8.2.2.
|t Classical Extraction of the Period from the Measured Value --
|g 8.3.
|t Example Illustrating Shor's Algorithm --
|g 8.4.
|t The Efficiency of Shor's Algorithm --
|g 8.5.
|t Omitting the Internal Measurement --
|g 8.6.
|t Generalizations --
|g 8.6.1.
|t The Discrete Logarithm Problem --
|g 8.6.2.
|t Hidden Subgroup Problems --
|g 8.7.
|t References --
|g 8.8.
|t Exercises --
|g 9.
|t Graver's Algorithm and Generalizations --
|g 9.1.
|t Graver's Algorithm --
|g 9.1.1.
|t Outline --
|g 9.1.2.
|t Setup --
|g 9.1.3.
|t The Iteration Step --
|g 9.1.4.
|t How Many Iterations? --
|g 9.2.
|t Amplitude Amplification --
|g 9.2.1.
|t The Geometry of Amplitude Amplification --
|g 9.3.
|t Optimality of Grover's Algorithm --
|g 9.3.1.
|t Reduction to Three Inequalities --
|g 9.3.2.
|t Proofs of the Three Inequalities --
|g 9.4.
|t Derandomization of Grover's Algorithm and Amplitude Amplification --
|g 9.4.1.
|t Approach 1: Modifying Each Step --
|g 9.4.2.
|t Approach 2: Modifying Only the Last Step --
|g 9.5.
|t Unknown Number of Solutions --
|g 9.5.1.
|t Varying the Number of Iterations --
|g 9.5.2.
|t Quantum Counting.
|
505 |
0 |
0 |
|g 9.6.
|t Practical Implications of Grover's Algorithm and Amplitude Amplification --
|g 9.7.
|t References --
|g 9.8.
|t Exercises --
|g III.
|t ENTANGLED SUBSYSTEMS AND ROBUST QUANTUM COMPUTATION --
|g 10.
|t Quantum Subsystems and Properties of Entangled States --
|g 10.1.
|t Quantum Subsystems and Mixed States --
|g 10.1.1.
|t Density Operators --
|g 10.1.2.
|t Properties of Density Operators --
|g 10.1.3.
|t The Geometry of Single-Qubit Mixed States --
|g 10.1.4.
|t Von Neumann Entropy --
|g 10.2.
|t Classifying Entangled States --
|g 10.2.1.
|t Bipartite Quantum Systems --
|g 10.2.2.
|t Classifying Bipartite Pure States up to LOCC Equivalence --
|g 10.2.3.
|t Quantifying Entanglement in Bipartite Mixed States --
|g 10.2.4.
|t Multipartite Entanglement --
|g 10.3.
|t Density Operator Formalism for Measurement --
|g 10.3.1.
|t Measurement of Density Operators --
|g 10.4.
|t Transformations of Quantum Subsystems and Decoherence --
|g 10.4.1.
|t Superoperators --
|g 10.4.2.
|t Operator Sum Decomposition --
|g 10.4.3.
|t A Relation Between Quantum State Transformations and Measurements --
|g 10.4.4.
|t Decoherence --
|g 10.5.
|t References --
|g 10.6.
|t Exercises --
|g 11.
|t Quantum Error Correction.
|
505 |
0 |
0 |
|g 11.1.
|t Three Simple Examples of Quantum Error Correcting Codes --
|g 11.1.1.
|t A Quantum Code That Corrects Single Bit-Flip Errors --
|g 11.1.2.
|t A Code for Single-Qubit Phase-Flip Errors --
|g 11.1.3.
|t A Code for All Single-Qubit Errors --
|g 11.2.
|t Framework for Quantum Error Correcting Codes --
|g 11.2.1.
|t Classical Error Correcting Codes --
|g 11.2.2.
|t Quantum Error Correcting Codes --
|g 11.2.3.
|t Correctable Sets of Errors for Classical Codes --
|g 11.2.4.
|t Correctable Sets of Errors for Quantum Codes --
|g 11.2.5.
|t Correcting Errors Using Classical Codes --
|g 11.2.6.
|t Diagnosing and Correcting Errors Using Quantum Codes --
|g 11.2.7.
|t Quantum Error Correction across Multiple Blocks --
|g 11.2.8.
|t Computing on Encoded Quantum States --
|g 11.2.9.
|t Superpositions and Mixtures of Correctable Errors Are Correctable --
|g 11.2.10.
|t The Classical Independent Error Model --
|g 11.2.11.
|t Quantum Independent Error Models --
|g 11.3.
|t CSS Codes --
|g 11.3.1.
|t Dual Classical Codes --
|g 11.3.2.
|t Construction of CSS Codes from Classical Codes Satisfying a Duality Condition --
|g 11.3.3.
|t The Steane Code --
|g 11.4.
|t Stabilizer Codes.
|
505 |
0 |
0 |
|g 13.4.
|t Alternatives to the Circuit Model of Quantum Computation --
|g 13.4.1.
|t Measurement-Based Cluster State Quantum Computation --
|g 13.4.2.
|t Adiabatic Quantum Computation --
|g 13.4.3.
|t Holonomic Quantum Computation --
|g 13.4.4.
|t Topological Quantum Computation --
|g 13.5.
|t Quantum Protocols --
|g 13.6.
|t Insight into Classical Computation --
|g 13.7.
|t Building Quantum Computers --
|g 13.8.
|t Simulating Quantum Systems --
|g 13.9.
|t Where Does the Power of Quantum Computation Come From? --
|g 13.10.
|t What if Quantum Mechanics Is Not Quite Correct? --
|t APPENDIXES --
|g A.
|t Some Relations Between Quantum Mechanics and Probability Theory --
|g A.1.
|t Tensor Products in Probability Theory --
|g A.2.
|t Quantum Mechanics as a Generalization of Probability Theory --
|g A.3.
|t References --
|g A.4.
|t Exercises --
|g B.
|t Solving the Abelian Hidden Subgroup Problem.
|
505 |
0 |
0 |
|g B.1.
|t Representations of Finite Abelian Groups --
|g B.1.1.
|t Schur's Lemma --
|g B.2.
|t Quantum Fourier Transforms for Finite Abelian Groups --
|g B.2.1.
|t The Fourier Basis of an Abelian Group --
|g B.2.2.
|t The Quantum Fourier Transform Over a Finite Abelian Group --
|g B.3.
|t General Solution to the Finite Abelian Hidden Subgroup Problem --
|g B.4.
|t Instances of the Abelian Hidden Subgroup Problem --
|g B.4.1.
|t Simon's Problem --
|g B.4.2.
|t Shor's Algorithm: Finding the Period of a Function --
|g B.5.
|t Comments on the Non-Abelian Hidden Subgroup Problem --
|g B.6.
|t References --
|g B.7.
|t Exercises.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Quantum computers.
|
650 |
|
0 |
|a Quantum theory.
|
650 |
|
2 |
|a Quantum Theory
|
650 |
|
6 |
|a Ordinateurs quantiques.
|
650 |
|
6 |
|a Théorie quantique.
|
650 |
|
7 |
|a COMPUTERS
|x Hardware
|x Mainframes & Minicomputers.
|2 bisacsh
|
650 |
|
7 |
|a Quantum computers
|2 fast
|
650 |
|
7 |
|a Quantum theory
|2 fast
|
650 |
|
7 |
|a Kvantdatorer.
|2 sao
|
650 |
|
7 |
|a Kvantteori.
|2 sao
|
700 |
1 |
|
|a Polak, Wolfgang,
|d 1950-
|1 https://id.oclc.org/worldcat/entity/E39PCjBQcQmqHRj8ktkPkkgqPP
|
758 |
|
|
|i has work:
|a Quantum computing (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGm6yhc4t3PPHWmqmV9TBP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Rieffel, Eleanor, 1965-
|t Quantum computing.
|d Cambridge, Mass. : MIT Press, 2011
|z 9780262015066
|z 0262015064
|w (DLC) 2010022682
|w (OCoLC)641998800
|
830 |
|
0 |
|a Scientific and engineering computation.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3339229
|z Texto completo
|
938 |
|
|
|a Books 24x7
|b B247
|n bke00052592
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3339229
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10476081
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 550650
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 5959104
|
938 |
|
|
|a Internet Archive
|b INAR
|n quantumcomputing0000rief
|
994 |
|
|
|a 92
|b IZTAP
|