Cargando…

Population Biology and Criticality : From Critical Birth-Death Processes to Self-Organized Criticality in Mutation Pathogen Systems.

The present book describes novel theories of mutation pathogen systems showing critical fluctuations, as a paradigmatic example of an application of the mathematics of critical phenomena to the life sciences. It will enable the reader to understand the implications and future impact of these finding...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stollenwerk, Nico
Otros Autores: Jansen, Vincent
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn741492808
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 110718s2010 si o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781848164024 
020 |a 1848164025 
029 1 |a AU@  |b 000048829206 
029 1 |a DEBBG  |b BV044156243 
029 1 |a DEBSZ  |b 397022794 
029 1 |a DEBSZ  |b 456483845 
029 1 |a AU@  |b 000073139005 
035 |a (OCoLC)741492808 
050 4 |a QH460 .S76 2010 
082 0 4 |a 570 
049 |a UAMI 
100 1 |a Stollenwerk, Nico. 
245 1 0 |a Population Biology and Criticality :  |b From Critical Birth-Death Processes to Self-Organized Criticality in Mutation Pathogen Systems. 
260 |a Singapore :  |b World Scientific,  |c 2010. 
300 |a 1 online resource (250 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The present book describes novel theories of mutation pathogen systems showing critical fluctuations, as a paradigmatic example of an application of the mathematics of critical phenomena to the life sciences. It will enable the reader to understand the implications and future impact of these findings, yet at same time allow him to actively follow the mathematical tools and scientific origins of critical phenomena. This book also seeks to pave the way to further fruitful applications of the mathematics of critical phenomena in other fields of the life sciences. 
588 0 |a Print version record. 
505 0 |a Preface; Contents; Chapter 1 From Deterministic to Stochastic Dynamics; 1.1 Basic Probability Theory: The Tool Box; 1.2 Stochastic Description of a Deterministic System: The Ulam Map; 1.3 A Fully Stochastic Dynamic System: The AR(1)-Process; 1.4 From Perron-Frobenius to Master Equation; 1.5 A First Example of a Master Equation: The Linear Infection Model; 1.5.1 Solving the first example of a master equation; 1.5.2 Solution of the linear infection model; 1.5.3 Mean value and its dynamics; 1.5.4 Mean dynamics; 1.6 The Birth and Death Process, a Non-Linear Stochastic System. 
505 8 |a 1.7 Solution of the Birth-Death ODE Shows Criticality1.7.1 Numerical integration shows power law at criticality; 1.7.2 Temporal correlation length diverges at criticality; Chapter 2 Spatial Stochastic Birth-Death Process or SIS-Epidemics; 2.1 The Spatial Master Equation; 2.1.1 A first inspection of the spatial birth-death process; 2.2 Clusters and their Dynamics; 2.2.1 Time evolution of marginals and local expectations; 2.3 Moment Equations; 2.3.1 Mean field behavior; 2.3.2 Pair approximation; 2.4 The SIS Dynamics under Pair Approximation; 2.5 Conclusions and Further Reading. 
505 8 |a Chapter 3 Criticality in Equilibrium Systems3.1 The Glauber Model: Stochastic Dynamics for the Ising Model; 3.1.1 A first glance at the dynamic Ising model; 3.2 The Ising Model, a Paradigm for Equilibrium Phase Transitions; 3.2.1 Distribution of magnetization and Gibbs free energy; 3.3 Equilibrium Distribution around Criticality; 3.3.1 Distribution of magnetization; 3.3.2 External magnetic field; 3.3.3 The maximum of the total magnetization distribution; 3.3.3.1 Approximation with Lagrange polynomials; 3.3.3.2 The maximum magnetization with changing parameters. 
505 8 |a 4.1 A Model with Partial Immunization: SIRI4.2 Local Quantities; 4.3 Dynamics Equations for Global Pairs; 4.3.1 The SIRI dynamics under pair approximation; 4.3.2 Balance equations for means and pairs; 4.4 Mean Field Model: SIRI with Reintroduced Susceptibles; 4.4.1 Pair dynamics for the SIRI model; 4.5 Fruitful Transfer between Equilibrium and Non-Equilibrium Systems; Chapter 5 Renormalization and Series Expansion: Techniques to Study Criticality; 5.1 Introduction; 5.2 Real Space Renormalization in One-Dimensional Lattice Gas; 5.3 Directed Percolation and Path Integrals. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Population biology. 
650 0 |a Critical phenomena (Physics) 
650 6 |a Biologie des populations. 
650 6 |a Phénomène critique (Physique) 
650 7 |a Critical phenomena (Physics)  |2 fast 
650 7 |a Population biology  |2 fast 
700 1 |a Jansen, Vincent. 
758 |i has work:  |a Population Biology and Criticality (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFJf4c4cK9HWRHX8CrYByd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Stollenwerk, Nico.  |t Population Biology and Criticality : From Critical Birth-Death Processes to Self-Organized Criticality in Mutation Pathogen Systems.  |d Singapore : World Scientific, ©2010  |z 9781848164017 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=731160  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL731160 
994 |a 92  |b IZTAP