Crystalline Materials for Actinide Immobilisation.
This book summarises approaches and current practices in actinide immobilisation using chemically-durable crystalline materials e.g. ceramics and monocrystals. Durable actinide-containing materials including crystalline ceramics and single crystals are attractive for various applications such as nuc...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore :
World Scientific,
2010.
|
Colección: | Series on materials for engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface; Abbreviations; Acknowledgements; Contents; Chapter 1 Introduction to the Actinides; 1.1. Actinide Series; 1.1.1. History; 1.1.2. Basic physical and chemical properties; 1.1.3. History of using actinide-containing materials; 1.1.4. High toxicity and long-lived radioactivity; 1.1.5. Need for actinide immobilisation; 1.2. Natural Actinides and Minerals; 1.2.1. Uraninite, pitchblende and thorianite; 1.2.2. Coffinite and thorite; 1.2.3. Brannerite; 1.2.4. Miscellaneous; 1.3. Artificial Actinides; 1.3.1. Actinide production in the nuclear fuel cycle; 1.3.2. Weapons-grade plutonium.
- 1.3.3. Minor actinides1.3.3.1. Neptunium-237; 1.3.3.2. Americium; 1.3.3.3. Curium; 1.3.3.4. Berkelium and Californium; 1.4. Actinide Host-Phases; 1.4.1. Natural accessory minerals; 1.4.2. Zircon and hafnon; 1.4.3. Monazite; 1.4.4. Zirconolite; 1.4.5. Baddeleyite (monoclinic zirconia); 1.4.6. Tazheranite (cubic zirconia); 1.4.7. Xenotime; 1.4.8. Apatite; 1.4.9. Pyrochlore; 1.4.10. Perovskite; 1.4.11. Garnet; 1.4.12. Murataite; 1.4.13. Kosnarite; 1.4.14. Natural gels; References; Chapter 2 Current and Potential Actinide Applications; 2.1. Advanced Nuclear Fuel Cycle; 2.1.1. MOX nuclear fuel.
- 2.1.2. Ceramic nuclear fuel2.1.3. Advanced nuclear reactors; 2.2. Inert Pu Ceramic Fuel; 2.3. Sealed Radioactive Sources; 2.4. Self-glowing Materials; 2.5. Transmutation Targets; 2.6. Summary; References; Chapter 3 Waste Actinide Immobilisation; 3.1. Ceramic Nuclear Wasteforms: Historical Overview; 3.1.1. Early work; 3.1.2. Emergence of Pu wasteforms; 3.1.3. Emergence of durability studies; 3.2. Titanate-based Ceramics; 3.2.1. Synroc; 3.2.2. Ti-pyrochlore; 3.3. Phosphate-based Ceramics; 3.3.1. Monazite; 3.3.2. Th-phosphate/diphosphate (TPD); 3.3.3. Kosnarite and NZP; 3.3.4. Apatite.
- 3.4. Ceramics Based on Zirconium and Hafnium Minerals3.4.1. Zircon/zirconia and hafnon/hafnia; 3.4.2. Cubic zirconia (tazheranite) and hafnia; 3.5. Garnet/Perovskite; 3.6. Summary; References; Chapter 4 Synthesis Methods; 4.1. Precursor Fabrication; 4.1.1. Sol-gel; 4.1.2. Co-precipitation; 4.1.3. Oxide powder mix; 4.2. Hot Uniaxial Pressing (HUP); 4.3. Hot Isostatic Pressing (HIP); 4.4. Pressing-sintering; 4.5. Melting-crystallisation; 4.6. Self-sustaining (Self-propagating) High Temperature Reactions; 4.7. Single Crystal Growth; 4.8. Summary; References.
- Chapter 5 Examination of Highly Radioactive Samples5.1. XRD Analysis; 5.2. SEM and EPMA; 5.3. Cathodoluminescence; 5.4. Optical Microscopy; 5.5. Mechanical Durability; 5.6. Leach and Alteration Tests; References; Chapter 6 Radiation Damage; 6.1. Ion-irradiation; 6.2. Doping with 238Pu and 244Cm; 6.2.1. Zircon/zirconia and hafnon/hafnia ceramics; 6.2.2. Zircon single crystal; 6.2.3. Cubic zirconia ceramic; 6.2.4. Monazite ceramic; 6.2.5. Monazite single crystal; 6.2.6. Ti-pyrochlore ceramic; 6.2.7. Zr-pyrochlore ceramic; 6.2.8. Zirconolite ceramic; 6.2.9. Garnet ceramic.