|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn741492800 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
110718s2010 si o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d OCLCO
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d ZCU
|d MERUC
|d ICG
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781848164192
|
020 |
|
|
|a 184816419X
|
029 |
1 |
|
|a AU@
|b 000048829189
|
029 |
1 |
|
|a DEBBG
|b BV044156205
|
029 |
1 |
|
|a DEBSZ
|b 456483780
|
029 |
1 |
|
|a AU@
|b 000073138984
|
035 |
|
|
|a (OCoLC)741492800
|
050 |
|
4 |
|a QD172.A3 B87 2010
|
082 |
0 |
4 |
|a 546.42
|a 620.1404228
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Burakov, Boris E.
|
245 |
1 |
0 |
|a Crystalline Materials for Actinide Immobilisation.
|
260 |
|
|
|a Singapore :
|b World Scientific,
|c 2010.
|
300 |
|
|
|a 1 online resource (216 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Materials for Engineering
|
520 |
|
|
|a This book summarises approaches and current practices in actinide immobilisation using chemically-durable crystalline materials e.g. ceramics and monocrystals. Durable actinide-containing materials including crystalline ceramics and single crystals are attractive for various applications such as nuclear fuel to burn excess Pu, chemically inert sources of; irradiation for use in unmanned space vehicles or producing electricity for microelectronic devices, and nuclear waste disposal. Long-lived emitting actinides such as Pu, Np, Am and Cm are currently of serious concern has a result of increase.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; Abbreviations; Acknowledgements; Contents; Chapter 1 Introduction to the Actinides; 1.1. Actinide Series; 1.1.1. History; 1.1.2. Basic physical and chemical properties; 1.1.3. History of using actinide-containing materials; 1.1.4. High toxicity and long-lived radioactivity; 1.1.5. Need for actinide immobilisation; 1.2. Natural Actinides and Minerals; 1.2.1. Uraninite, pitchblende and thorianite; 1.2.2. Coffinite and thorite; 1.2.3. Brannerite; 1.2.4. Miscellaneous; 1.3. Artificial Actinides; 1.3.1. Actinide production in the nuclear fuel cycle; 1.3.2. Weapons-grade plutonium.
|
505 |
8 |
|
|a 1.3.3. Minor actinides1.3.3.1. Neptunium-237; 1.3.3.2. Americium; 1.3.3.3. Curium; 1.3.3.4. Berkelium and Californium; 1.4. Actinide Host-Phases; 1.4.1. Natural accessory minerals; 1.4.2. Zircon and hafnon; 1.4.3. Monazite; 1.4.4. Zirconolite; 1.4.5. Baddeleyite (monoclinic zirconia); 1.4.6. Tazheranite (cubic zirconia); 1.4.7. Xenotime; 1.4.8. Apatite; 1.4.9. Pyrochlore; 1.4.10. Perovskite; 1.4.11. Garnet; 1.4.12. Murataite; 1.4.13. Kosnarite; 1.4.14. Natural gels; References; Chapter 2 Current and Potential Actinide Applications; 2.1. Advanced Nuclear Fuel Cycle; 2.1.1. MOX nuclear fuel.
|
505 |
8 |
|
|a 2.1.2. Ceramic nuclear fuel2.1.3. Advanced nuclear reactors; 2.2. Inert Pu Ceramic Fuel; 2.3. Sealed Radioactive Sources; 2.4. Self-glowing Materials; 2.5. Transmutation Targets; 2.6. Summary; References; Chapter 3 Waste Actinide Immobilisation; 3.1. Ceramic Nuclear Wasteforms: Historical Overview; 3.1.1. Early work; 3.1.2. Emergence of Pu wasteforms; 3.1.3. Emergence of durability studies; 3.2. Titanate-based Ceramics; 3.2.1. Synroc; 3.2.2. Ti-pyrochlore; 3.3. Phosphate-based Ceramics; 3.3.1. Monazite; 3.3.2. Th-phosphate/diphosphate (TPD); 3.3.3. Kosnarite and NZP; 3.3.4. Apatite.
|
505 |
8 |
|
|a 3.4. Ceramics Based on Zirconium and Hafnium Minerals3.4.1. Zircon/zirconia and hafnon/hafnia; 3.4.2. Cubic zirconia (tazheranite) and hafnia; 3.5. Garnet/Perovskite; 3.6. Summary; References; Chapter 4 Synthesis Methods; 4.1. Precursor Fabrication; 4.1.1. Sol-gel; 4.1.2. Co-precipitation; 4.1.3. Oxide powder mix; 4.2. Hot Uniaxial Pressing (HUP); 4.3. Hot Isostatic Pressing (HIP); 4.4. Pressing-sintering; 4.5. Melting-crystallisation; 4.6. Self-sustaining (Self-propagating) High Temperature Reactions; 4.7. Single Crystal Growth; 4.8. Summary; References.
|
505 |
8 |
|
|a Chapter 5 Examination of Highly Radioactive Samples5.1. XRD Analysis; 5.2. SEM and EPMA; 5.3. Cathodoluminescence; 5.4. Optical Microscopy; 5.5. Mechanical Durability; 5.6. Leach and Alteration Tests; References; Chapter 6 Radiation Damage; 6.1. Ion-irradiation; 6.2. Doping with 238Pu and 244Cm; 6.2.1. Zircon/zirconia and hafnon/hafnia ceramics; 6.2.2. Zircon single crystal; 6.2.3. Cubic zirconia ceramic; 6.2.4. Monazite ceramic; 6.2.5. Monazite single crystal; 6.2.6. Ti-pyrochlore ceramic; 6.2.7. Zr-pyrochlore ceramic; 6.2.8. Zirconolite ceramic; 6.2.9. Garnet ceramic.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Actinide elements.
|
650 |
|
0 |
|a Alpha-bearing wastes.
|
650 |
|
0 |
|a Ceramic materials.
|
650 |
|
6 |
|a Actinides.
|
650 |
|
6 |
|a Déchets alpha.
|
650 |
|
6 |
|a Matériaux céramiques.
|
650 |
|
7 |
|a ceramic (material)
|2 aat
|
650 |
|
7 |
|a Actinide elements
|2 fast
|
650 |
|
7 |
|a Alpha-bearing wastes
|2 fast
|
650 |
|
7 |
|a Ceramic materials
|2 fast
|
700 |
1 |
|
|a Ojovan, Michael I.
|
758 |
|
|
|i has work:
|a Crystalline materials for actinide immobilisation (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGrHgVbFJ3HgkQjKVH38yb
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Burakov, Boris E.
|t Crystalline Materials for Actinide Immobilisation.
|d Singapore : World Scientific, ©2010
|z 9781848164185
|
830 |
|
0 |
|a Series on materials for engineering.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=731115
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL731115
|
994 |
|
|
|a 92
|b IZTAP
|