Cargando…

Minimal submanifolds in pseudo-Riemannian geometry /

Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Anciaux, Henri
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn740435767
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 110711s2011 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d E7B  |d OCLCQ  |d DEBSZ  |d YDXCP  |d OCLCQ  |d MHW  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d OCLCQ  |d VTS  |d ICG  |d INT  |d AU@  |d OCLCQ  |d JBG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1058487617 
020 |a 9789814291255  |q (electronic bk.) 
020 |a 9814291250  |q (electronic bk.) 
020 |z 9789814291248 
020 |z 9814291242 
029 1 |a AU@  |b 000053272041 
029 1 |a DEBBG  |b BV043126832 
029 1 |a DEBBG  |b BV044156298 
029 1 |a DEBSZ  |b 372699855 
029 1 |a DEBSZ  |b 379322064 
029 1 |a DEBSZ  |b 421583762 
029 1 |a DEBSZ  |b 454897839 
029 1 |a NZ1  |b 14167229 
035 |a (OCoLC)740435767  |z (OCoLC)1058487617 
050 4 |a QA649  |b .A66 2011eb 
072 7 |a MAT  |x 012020  |2 bisacsh 
082 0 4 |a 516.373  |2 22 
049 |a UAMI 
100 1 |a Anciaux, Henri. 
245 1 0 |a Minimal submanifolds in pseudo-Riemannian geometry /  |c Henri Anciaux. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c 2011. 
300 |a 1 online resource (xv, 167 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 161-164) and index. 
588 0 |a Print version record. 
520 |a Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemann. 
505 0 |a 1. Submanifolds in pseudo-Riemannian geometry. 1.1. Pseudo-Riemannian manifolds. 1.2. Submanifolds. 1.3. The variation formulae for the volume. 1.4. Exercises -- 2. Minimal surfaces in pseudo-Euclidean space. 2.1. Intrinsic geometry of surfaces. 2.2. Graphs in Minkowski space. 2.3. The classification of ruled, minimal surfaces. 2.4. Weierstrass representation for minimal surfaces. 2.5. Exercises -- 3. Equivariant minimal hypersurfaces in space forms. 3.1. The pseudo-Riemannian space forms. 3.2. Equivariant minimal hypersurfaces in pseudo-Euclidean space. 3.3. Equivariant minimal hypersurfaces in pseudo-space forms. 3.4. Exercises -- 4. Pseudo-Kahler manifolds. 4.1. The complex pseudo-Euclidean space. 4.2. The general definition. 4.3. Complex space forms. 4.4. The tangent bundle of a pseudo-Kahler manifold. 4.5. Exercises -- 5. Complex and Lagrangian submanifolds in pseudo-Kahler manifolds. 5.1. Complex submanifolds. 5.2. Lagrangian submanifolds. 5.3. Minimal Lagrangian surfaces in C[symbol] with neutral metric. 5.4. Minimal Lagrangian submanifolds in C[symbol]. 5.5. Minimal Lagrangian submanifols in complex space forms. 5.6. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface. 5.7. Exercises -- 6. Minimizing properties of minimal submanifolds. 6.1. Minimizing submanifolds and calibrations. 6.2. Non-minimizing submanifolds. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Riemannian manifolds. 
650 0 |a Minimal submanifolds. 
650 6 |a Variétés de Riemann. 
650 6 |a Sous-variétés minimales. 
650 7 |a MATHEMATICS  |x Geometry  |x Analytic.  |2 bisacsh 
650 7 |a Minimal submanifolds  |2 fast 
650 7 |a Riemannian manifolds  |2 fast 
758 |i has work:  |a Minimal submanifolds in pseudo-Riemannian geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFG8m3wBDqfWWTgMXxQ4jd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Anciaux, Henri.  |t Minimal submanifolds in pseudo-Riemannian geometry.  |d Singapore ; Hackensack, NJ : World Scientific, 2011  |z 9789814291248  |w (OCoLC)700137424 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=731228  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL731228 
938 |a ebrary  |b EBRY  |n ebr10479995 
938 |a EBSCOhost  |b EBSC  |n 374884 
938 |a YBP Library Services  |b YANK  |n 6965069 
994 |a 92  |b IZTAP