Cargando…

Graph classification and clustering based on vector space embedding /

This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector. This volume utilizes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Riesen, Kaspar
Otros Autores: Bunke, Horst
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; London : World Scientific, ©2010.
Colección:Series in machine perception and artificial intelligence ; v. 77.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn738433294
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 110705s2010 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d E7B  |d OCLCQ  |d CUY  |d UIU  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d GA0  |d OCLCF  |d OCLCQ  |d IDEBK  |d OCLCQ  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d OCL  |d JBG  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d AU@  |d UKCRE  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
019 |a 741454350  |a 816846439  |a 848042357  |a 988479328  |a 991949486  |a 1037710269  |a 1038640392  |a 1045607549  |a 1055321792  |a 1058234096  |a 1077228633  |a 1081251582  |a 1086432756  |a 1153487027  |a 1228536081  |a 1259140096 
020 |a 9789814304726  |q (electronic bk.) 
020 |a 9814304727  |q (electronic bk.) 
020 |a 1283144506 
020 |a 9781283144506 
020 |z 9789814304719 
020 |z 9814304719 
020 |a 9786613144508 
020 |a 6613144509 
029 1 |a AU@  |b 000048829193 
029 1 |a DEBBG  |b BV043098510 
029 1 |a DEBBG  |b BV044156218 
029 1 |a DEBSZ  |b 372699715 
029 1 |a DEBSZ  |b 421584653 
029 1 |a DEBSZ  |b 442816588 
029 1 |a DEBSZ  |b 454995695 
029 1 |a HEBIS  |b 278034187 
029 1 |a NZ1  |b 13934346 
035 |a (OCoLC)738433294  |z (OCoLC)741454350  |z (OCoLC)816846439  |z (OCoLC)848042357  |z (OCoLC)988479328  |z (OCoLC)991949486  |z (OCoLC)1037710269  |z (OCoLC)1038640392  |z (OCoLC)1045607549  |z (OCoLC)1055321792  |z (OCoLC)1058234096  |z (OCoLC)1077228633  |z (OCoLC)1081251582  |z (OCoLC)1086432756  |z (OCoLC)1153487027  |z (OCoLC)1228536081  |z (OCoLC)1259140096 
050 4 |a TA1650  |b .R54 2010eb 
072 7 |a COM  |x 047000  |2 bisacsh 
072 7 |a COM  |x 016000  |2 bisacsh 
072 7 |a UYQP  |2 bicssc 
082 0 4 |a 006.42  |2 22 
049 |a UAMI 
100 1 |a Riesen, Kaspar. 
245 1 0 |a Graph classification and clustering based on vector space embedding /  |c Kaspar Riesen & Horst Bunke. 
260 |a Singapore ;  |a London :  |b World Scientific,  |c ©2010. 
300 |a 1 online resource (xiv, 331 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in machine perception and artificial intelligence ;  |v v. 77 
504 |a Includes bibliographical references (pages 309-328) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction and basic concepts. 1.1. Pattern recognition. 1.2. Learning methodology. 1.3. Statistical and structural pattern recognition. 1.4. Dissimilarity representation for pattern recognition. 1.5. Summary and outline -- 2. Graph matching. 2.1. Graph and subgraph. 2.2. Exact graph matching. 2.3. Error-tolerant graph matching. 2.4. Summary and broader perspective -- 3. Graph edit distance. 3.1. Basic definition and properties. 3.2. Exact computation of GED. 3.3. Efficient approximation algorithms. 3.4. Exact vs. approximate graph edit distance -- an experimental evaluation. 3.5. Summary -- 4. Graph data. 4.1. Graph data sets. 4.2. Evaluation of graph edit distance. 4.3. Data visualization. 4.4. Summary -- 5. Kernel methods. 5.1. Overview and primer on kernel theory. 5.2. Kernel functions. 5.3. Feature map vs. kernel trick. 5.4. Kernel machines. 5.5. Graph kernels. 5.6. Experimental evaluation. 5.7. Summary -- 6. Graph embedding using dissimilarities. 6.1. Related work. 6.2. Graph embedding using dissimilarities. 6.3. Prototype selection strategies. 6.4. Prototype reduction schemes. 6.5. Feature selection algorithms. 6.6. Defining the reference sets for Lipschitz embeddings. 6.7. Ensemble methods. 6.8. Summary -- 7. Classification experiments with vector space embedded graphs. 7.1. Nearest-neighbor classifiers applied to vector space embedded graphs. 7.2. Support vector machines applied to vector space embedded graphs. 7.3. Summary and discussion -- 8. Clustering experiments with vector space embedded graphs. 8.1. Experimental setup and validation of the meta parameters. 8.2. Results and discussion. 8.3. Summary and discussion -- 9. Conclusions. 
520 |a This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector. This volume utilizes the dissimilarity space representation originally proposed by Duin and Pekalska to embed graphs in real vector spaces. Such an embedding gives one access to all algorithms developed in the past for feature vectors, which has been the predominant representation formalism in pattern recognition and related areas for a long time. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Optical pattern recognition. 
650 0 |a Artificial intelligence  |x Graphic methods. 
650 0 |a Vector spaces. 
650 6 |a Reconnaissance optique des formes (Informatique) 
650 6 |a Intelligence artificielle  |x Méthodes graphiques. 
650 6 |a Espaces vectoriels. 
650 7 |a COMPUTERS  |x Optical Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Computer Vision & Pattern Recognition.  |2 bisacsh 
650 7 |a Optical pattern recognition  |2 fast 
650 7 |a Vector spaces  |2 fast 
700 1 |a Bunke, Horst. 
758 |i has work:  |a Graph classification and clustering based on vector space embedding (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGBRv7GCfcYjRXCHGxp49C  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Riesen, Kaspar.  |t Graph classification and clustering based on vector space embedding.  |d Singapore ; London : World Scientific, ©2010  |z 9789814304719  |w (OCoLC)515479057 
830 0 |a Series in machine perception and artificial intelligence ;  |v v. 77. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=731129  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686575 
938 |a EBL - Ebook Library  |b EBLB  |n EBL731129 
938 |a ebrary  |b EBRY  |n ebr10479748 
938 |a EBSCOhost  |b EBSC  |n 374794 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 314450 
938 |a YBP Library Services  |b YANK  |n 6965099 
994 |a 92  |b IZTAP