Towards a mathematical theory of complex biological systems /
This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach t...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; Hackensack, NJ :
World Scientific,
©2011.
|
Colección: | Series in mathematical biology and medicine ;
v. 11. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph
- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity
- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis
- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis
- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach
- 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis
- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis
- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives
- 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis
- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure.