Cargando…

Statistical And Evolutionary Analysis Of Biological Networks.

Networks provide a very useful way to describe a wide range of different data types in biology, physics and elsewhere. Apart from providing a convenient tool to visualize highly dependent data, networks allow stringent mathematical and statistical analysis. In recent years, much progress has been ac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: World Scientific 2009.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover13;
  • Contents
  • Preface
  • 1. A Network Analysis Primer Michael P.H. Stumpf and Carsten Wiuf
  • 1.1. Introduction
  • 1.2. Types of Biological Networks
  • 1.3. A Primer on Networks
  • 1.3.1. Mathematical descriptions of networks
  • 1.3.2. Network properties
  • 1.3.3. Mathematical representation of networks
  • 1.4. Comparing Biological Networks
  • 1.4.1. Identity of networks
  • 1.4.2. Subnets and patterns
  • 1.4.3. The challenges of the data
  • References
  • 2. Evolutionary Analysis of Protein Interaction Networks Carsten Wiuf and Oliver Ratmann
  • 2.1. Introduction
  • 2.1.1. Molecular genetic uptake
  • 2.1.2. Expansion by gene duplication
  • 2.1.3. Redeployment of existing genetic systems
  • 2.2. Protein Interaction Network Data
  • 2.3. Mathematical Models of Networks and Network Growth
  • 2.3.1. Simplistic models of network growth
  • 2.3.2. Complex models of network growth by repeated node addition
  • 2.3.3. Asymptotics of the node degree DD+RA and DD+PA
  • 2.4. Inferring Evolutionary Dynamics in Terms of Mixture Models of Network Growth
  • 2.4.1. The likelihood of PIN data under DD+RA or DD+PA
  • 2.4.2. Simple methods to account for incomplete datasets
  • 2.4.3. Approximating the likelihood with many summaries
  • 2.4.4. Approximate Bayesian computation
  • 2.4.5. Evolutionary analysis of the PIN topologies of T. pallidum, H. pylori and P. falciparum
  • 2.4.6. The size of the interactome
  • 2.5. Conclusion
  • Acknowledgements
  • Appendix A. Proofs of Theorems.
  • References
  • 3. Motifs in Biological Networks Falk Schreiber and Henning Schw obbermeyer
  • 3.1. Introduction
  • 3.2. Characterisation of Network Motifs
  • 3.2.1. Definitions
  • 3.2.2. Modelling of biological data as graphs
  • 3.2.3. Complexity of motif search
  • 3.2.4. Frequency concepts
  • 3.2.5. Statistical significance of network motifs
  • 3.2.6. Randomisation algorithm for generation of null model networks
  • 3.2.7. Calculation of the P-value and Z-score
  • 3.3. Methods and Tools for the Analysis of Network Motifs
  • 3.3.1. Mfinder
  • 3.3.2. Pajek
  • 3.3.3. MAVisto
  • 3.4. Analyses of Motifs in Networks
  • 3.4.1. Analysis of gene regulatory networks
  • 3.4.2. Motifs in cortical networks
  • 3.4.3. Analysis of other networks
  • 3.4.4. Superstructures formed by overlapping motif matches
  • 3.4.5. Dynamic properties of network motifs
  • 3.4.6. Comparison of networks using motif distributions
  • 3.4.7. On the function of network motifs in biological networks
  • References
  • 4. Bayesian Analysis of Biological Networks: Clusters, Motifs, Cross- Species Correlations Johannes Berg and Michael L assig
  • 4.1. Introduction
  • 4.2. Measuring Biological Networks
  • 4.3. Random Networks in Biology
  • 4.4. Network Clusters
  • 4.4.1. Clusters in protein interaction networks
  • 4.5. Network Motifs
  • 4.5.1. Network motifs in regulatory networks
  • 4.6. Cross-Species Analysis of Networks
  • 4.6.1. Alignment of co-expression networks
  • 4.7. Towards an Evolutionary Theory
  • 4.7.1. Genetic interactions between different links
  • 4.7.2. Gene duplications
  • 4.7.3. Neutral and selective dynamics
  • Acknowledgements
  • Appendix: Bayesian Analysis of Network Data
  • References
  • 5. Network Concepts and Epidemiological Models Rowland R. Kao and Istvan Z. Kiss
  • 5.1. Introduction
  • 5.2. Simple Epidemiological Models
  • 5.2.1. Introducing R0.