Statistical And Evolutionary Analysis Of Biological Networks.
Networks provide a very useful way to describe a wide range of different data types in biology, physics and elsewhere. Apart from providing a convenient tool to visualize highly dependent data, networks allow stringent mathematical and statistical analysis. In recent years, much progress has been ac...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
World Scientific
2009.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover13;
- Contents
- Preface
- 1. A Network Analysis Primer Michael P.H. Stumpf and Carsten Wiuf
- 1.1. Introduction
- 1.2. Types of Biological Networks
- 1.3. A Primer on Networks
- 1.3.1. Mathematical descriptions of networks
- 1.3.2. Network properties
- 1.3.3. Mathematical representation of networks
- 1.4. Comparing Biological Networks
- 1.4.1. Identity of networks
- 1.4.2. Subnets and patterns
- 1.4.3. The challenges of the data
- References
- 2. Evolutionary Analysis of Protein Interaction Networks Carsten Wiuf and Oliver Ratmann
- 2.1. Introduction
- 2.1.1. Molecular genetic uptake
- 2.1.2. Expansion by gene duplication
- 2.1.3. Redeployment of existing genetic systems
- 2.2. Protein Interaction Network Data
- 2.3. Mathematical Models of Networks and Network Growth
- 2.3.1. Simplistic models of network growth
- 2.3.2. Complex models of network growth by repeated node addition
- 2.3.3. Asymptotics of the node degree DD+RA and DD+PA
- 2.4. Inferring Evolutionary Dynamics in Terms of Mixture Models of Network Growth
- 2.4.1. The likelihood of PIN data under DD+RA or DD+PA
- 2.4.2. Simple methods to account for incomplete datasets
- 2.4.3. Approximating the likelihood with many summaries
- 2.4.4. Approximate Bayesian computation
- 2.4.5. Evolutionary analysis of the PIN topologies of T. pallidum, H. pylori and P. falciparum
- 2.4.6. The size of the interactome
- 2.5. Conclusion
- Acknowledgements
- Appendix A. Proofs of Theorems.
- References
- 3. Motifs in Biological Networks Falk Schreiber and Henning Schw obbermeyer
- 3.1. Introduction
- 3.2. Characterisation of Network Motifs
- 3.2.1. Definitions
- 3.2.2. Modelling of biological data as graphs
- 3.2.3. Complexity of motif search
- 3.2.4. Frequency concepts
- 3.2.5. Statistical significance of network motifs
- 3.2.6. Randomisation algorithm for generation of null model networks
- 3.2.7. Calculation of the P-value and Z-score
- 3.3. Methods and Tools for the Analysis of Network Motifs
- 3.3.1. Mfinder
- 3.3.2. Pajek
- 3.3.3. MAVisto
- 3.4. Analyses of Motifs in Networks
- 3.4.1. Analysis of gene regulatory networks
- 3.4.2. Motifs in cortical networks
- 3.4.3. Analysis of other networks
- 3.4.4. Superstructures formed by overlapping motif matches
- 3.4.5. Dynamic properties of network motifs
- 3.4.6. Comparison of networks using motif distributions
- 3.4.7. On the function of network motifs in biological networks
- References
- 4. Bayesian Analysis of Biological Networks: Clusters, Motifs, Cross- Species Correlations Johannes Berg and Michael L assig
- 4.1. Introduction
- 4.2. Measuring Biological Networks
- 4.3. Random Networks in Biology
- 4.4. Network Clusters
- 4.4.1. Clusters in protein interaction networks
- 4.5. Network Motifs
- 4.5.1. Network motifs in regulatory networks
- 4.6. Cross-Species Analysis of Networks
- 4.6.1. Alignment of co-expression networks
- 4.7. Towards an Evolutionary Theory
- 4.7.1. Genetic interactions between different links
- 4.7.2. Gene duplications
- 4.7.3. Neutral and selective dynamics
- Acknowledgements
- Appendix: Bayesian Analysis of Network Data
- References
- 5. Network Concepts and Epidemiological Models Rowland R. Kao and Istvan Z. Kiss
- 5.1. Introduction
- 5.2. Simple Epidemiological Models
- 5.2.1. Introducing R0.