Cargando…

Single-Electron Devices And Circuits In Silicon.

This work reviews research on single-electron devices and circuits in silicon. These devices provide a means to control electronic charge at the one-electron level and are promising systems for the development of few-electron, nanoscale electronic circuits.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: World Scientific 2009.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover13;
  • Contents
  • Preface
  • 1. Introduction
  • 1.1 Single-Electron Effects
  • 1.2 Early Observations of Single-Electron Effects
  • 1.3 Basic Single-Electron Devices
  • 1.3.1 Single-electron transistor.
  • 1.3.2 Single-electron box
  • 1.3.3 Multiple-tunnel junction
  • 1.4 Scope of This Book
  • 1.4.1 Introduction to subsequent chapters
  • 2. Single-Electron Charging Effects
  • 2.1 Introduction
  • 2.2 Single Tunnel Junction
  • 2.3 The Single-Electron Box.
  • 2.3.1 The 8216;critical charge.
  • 2.3.2 Electrostatic energy changes
  • 2.3.3 Energy diagram for the single-electron box.
  • 2.4 The Single-Electron Transistor
  • 2.4.1 Electrostatic energy changes
  • 2.4.2 Tunnelling rates.
  • 2.4.3 Offset charge
  • 2.4.4 Calculation of I-V characteristics.
  • 2.4.5 The Coulomb staircase
  • 2.4.6 Energy band diagrams
  • 2.5 Quantum Dots
  • 2.5.1 Coulomb oscillations in quantum dots.
  • 2.6 The Multiple-Tunnel Junction
  • 3. Single-Electron Transistors in Silicon
  • 3.1 Early Observations
  • 3.2 SETs in Crystalline Silicon
  • 3.2.1 SETs with lithographically defined islands
  • 3.2.2 SETs using MOSFET structures
  • 3.2.3 Crystalline silicon nanowire SETs
  • 3.2.4 Room temperature Coulomb oscillations with large peak-to- valley ratio
  • 3.2.5 Fabrication and characterization of nanowire SETs
  • 3.3 Single-Electron Transistors in Nanocrystalline Silicon
  • 3.3.1 Conduction in continuous nanocrystalline silicon films
  • 3.3.2 Nanocrystalline silicon nanowire SETs
  • 3.3.3 Point-contact nc-Si SET: Room temperature operation.
  • 3.3.4 8216;Grain-boundary engineering
  • 3.3.5 SETs using discrete silicon nanocrystals
  • 3.3.6 Comparison with crystalline silicon SETs.
  • 3.3.7 Electron coupling effects in nanocrystalline silicon
  • 3.4 Single-Electron Effects in Grown Si Nanowires and Nanochains.
  • 4. Single-Electron Memory
  • 4.1 Introduction
  • 4.1.1 Multiple-tunnel junction memory.
  • 4.2 MTJ Memories in Silicon.
  • 4.2.1 The single-electron detector.
  • 4.3 Single- and Few-Electron Memories with Floating Gates
  • 4.4 Large-scale Integrated Single-Electron Memory in Nanocrystalline Silicon
  • 4.5 Few-Electron Memory with Integrated SET/MOSFET
  • 4.5.1 Silicon nanowire SETs for L-SEM application
  • 4.5.2 Single-gate L-SEM
  • 4.5.3 Split-gate L-SEM
  • 4.5.4 L-SEM 3 215; 3 cell array.
  • 5. Few-Electron Transfer Devices
  • 5.1 Introduction
  • 5.2 Single-Electron Turnstiles and Pumps
  • 5.2.1 Single-electron turnstile
  • 5.2.2 Single-electron pump
  • 5.2.3 Single-electron pump and turnstile using a semiconductor quantum dot
  • 5.3 Few-Electron Devices using MTJs.
  • 5.3.1 Operation of single r.f. signal MTJ electron pump.
  • 5.3.2 Single r.f. signal MTJ electron pumps in GaAs
  • 5.3.3 Single r.f. signal MTJ electron pumps in silicon
  • 5.3.4 MTJ electron pump with multi-phase r.f. signals.
  • 5.4 Single-Electron Transfer Devices in Silicon
  • 5.4.1 Single-electron transfer using a CCD
  • 5.4.2 SET/MOSFET single-electron pump and turnstile
  • 5.5 Metrological Applications
  • 6. Single-Electron Logic Circuits
  • 6.1 Introduction
  • 6.2 Voltage State Logic
  • 6.2.1 SET inverter with resistive load
  • 6.2.2 Complementary SET inverter
  • 6.2.3 Complementary SET NAND and NOR gates
  • 6.2.4 Programmable SET logic
  • 6.2.5 Logic using SETs with multiple input terminals
  • 6.2.6 Effe.