Cargando…

Combinatorial Development Of Solid Catalytic Materials : Design Of High-Throughput Experiments, Data Analysis, Data Mining.

The book provides a comprehensive treatment of combinatorial development of heterogeneous catalysts. In particular, two computer-aided approaches that have played a key role in combinatorial catalysis and high-throughput experimentation during the last decade - evolutionary optimization and artifici...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: World Scientific 2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 EBOOKCENTRAL_ocn729020336
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|---uuuuu
008 101115s2009 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d OCLCQ  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 816582523 
020 |a 128275985X 
020 |a 9781282759855 
020 |a 9781848163447 
020 |a 1848163444 
029 1 |a AU@  |b 000055764956 
029 1 |a DEBBG  |b BV044178769 
029 1 |a DEBSZ  |b 431676747 
029 1 |a DEBSZ  |b 456560505 
035 |a (OCoLC)729020336  |z (OCoLC)816582523 
050 4 |a QD505 
072 7 |a PNRD  |2 bicssc 
082 0 4 |a 541.395 
049 |a UAMI 
245 0 0 |a Combinatorial Development Of Solid Catalytic Materials :  |b Design Of High-Throughput Experiments, Data Analysis, Data Mining. 
260 |b World Scientific  |c 2009. 
300 |a 1 online resource (192) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover13; -- Contents -- Dedication -- Preface -- Chapter 1. Background of Combinatorial Catalyst Development (M. Baerns) -- Bibliography -- Chapter 2. Approaches in the Development of Heterogeneous Catalysts (M. Baerns) -- 2.1. Fundamental Aspects -- 2.2. High-throughput Technologies for Preparation and Testing in Combinatorial Development of Catalytic Materials -- 2.2.1. Selection of Potential Elements for Defining the Multi-parameter Compositional Space of Catalytic Materials -- 2.2.2. Experimental Tools for Preparing and Testing Large Numbers of Catalytic-material Specimens -- Bibliography -- Chapter 3. Mathematical Methods of Searching for Optimal Catalytic Materials (M. Holena) -- 3.1. Introduction -- 3.2. Statistical Design of Experiments -- 3.3. Optimisation Methods for Empirical Objective Functions -- 3.4. Evolutionary Optimisation: The Main Approach to Seek Optimal Catalysts -- 3.4.1. Dealing with Constraints in Genetic Optimisation -- 3.5. Other Stochastic Optimisation Methods -- 3.6. Deterministic Optimisation -- 3.6.1. Utilizability of Methods with Derivatives in Catalysis -- Bibliography -- Chapter 4. Generating Problem-Tailored Genetic Algorithms for Catalyst Search (M. Holena) -- 4.1. Using a Program Generator 8212; Why and How -- 4.2. Description Language for Optimisation Tasks in Catalysis -- 4.3. Tackling Constrained Mixed Optimisation -- 4.4. A Prototype Implementation -- Bibliography -- Chapter 5. Analysis and Mining of Data Collected in Catalytic Experiments (M. Holena) -- 5.1. Similarity and Difference Between Data Analysis and Mining -- 5.2. Survey of Existing Methods -- 5.2.1. Statistical Methods -- 5.2.2. Extraction of Logical Rules from Data -- 5.3. Case Study with the Synthesis of HCN -- Bibliography -- Chapter 6. Artificial Neural Networks in the Development of Catalytic Materials (M. Holena) -- 6.1. What are Artificial Neural Networks? -- 6.1.1. Network Architecture -- 6.1.2. Important Kinds of Neural Networks -- 6.1.3. Activity of Neurons -- 6.1.4. What do Neural Networks Compute? -- 6.2. Approximation Capability of Neural Networks -- 6.3. Training Neural Networks -- 6.4. Knowledge Obtainable from a Trained Network -- Bibliography -- Chapter 7. Tuning Evolutionary Algorithms with Artificial Neural Networks (M. Holena) -- 7.1. Heuristic Parameters of Genetic Algorithms -- 7.2. Parameter Tuning Based on Virtual Experiments -- 7.3. Case Study with the Oxidative Dehydrogenation of Propane -- Bibliography -- Chapter 8. Improving Neural Network Approximations (M. Holena) -- 8.1. Importance of Choosing the Right Network Architecture -- 8.2. Influence of the Distribution of Training Data -- 8.3. Boosting Neural Networks -- 8.4. Case Study with HCN Synthesis Continued -- Bibliography -- Chapter 9. Applications of Combinatorial Catalyst Development and An Outlook on Future Work (M. Baerns) -- 9.1. Introduction -- 9.2. Experimental Applications of Combinatorial Catalyst Development -- 9.3. Methodology -- 9.4. Conclusions and Outlook -- 9.4.1. Applications of Combinatorial Methodologies in Practice -- 9.4.2. Computer-aided Methods for the Optimisation of Catalyst Composition and Data Mining -- Bibliography -- Index. 
520 |a The book provides a comprehensive treatment of combinatorial development of heterogeneous catalysts. In particular, two computer-aided approaches that have played a key role in combinatorial catalysis and high-throughput experimentation during the last decade - evolutionary optimization and artificial neural networks - are described. The book is unique in that it describes evolutionary optimization in a broader context of methods of searching for optimal catalytic materials, including statistical design of experiments, as well as presents neural networks in a broader context of data analysis. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Catalysis  |x Computer simulation. 
650 0 |a Catalysis  |x Mathematical models. 
650 6 |a Catalyse  |x Simulation par ordinateur. 
650 6 |a Catalyse  |x Modèles mathématiques. 
650 7 |a Catalysis  |x Computer simulation  |2 fast 
650 7 |a Catalysis  |x Mathematical models  |2 fast 
655 4 |a Electronic resource. 
720 |a Baerns Manfred Et Al. 
758 |i has work:  |a Combinatorial development of solid catalytic materials (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGX4X9dgM93r4FXFY6HX3P  |4 https://id.oclc.org/worldcat/ontology/hasWork 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679344  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679344 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 275985 
994 |a 92  |b IZTAP