|
|
|
|
LEADER |
00000cam a2200000M 4500 |
001 |
EBOOKCENTRAL_ocn729020336 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un|---uuuuu |
008 |
101115s2009 xx o 000 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d OCLCQ
|d EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d ZCU
|d OCLCQ
|d MERUC
|d ICG
|d OCLCO
|d OCLCF
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 816582523
|
020 |
|
|
|a 128275985X
|
020 |
|
|
|a 9781282759855
|
020 |
|
|
|a 9781848163447
|
020 |
|
|
|a 1848163444
|
029 |
1 |
|
|a AU@
|b 000055764956
|
029 |
1 |
|
|a DEBBG
|b BV044178769
|
029 |
1 |
|
|a DEBSZ
|b 431676747
|
029 |
1 |
|
|a DEBSZ
|b 456560505
|
035 |
|
|
|a (OCoLC)729020336
|z (OCoLC)816582523
|
050 |
|
4 |
|a QD505
|
072 |
|
7 |
|a PNRD
|2 bicssc
|
082 |
0 |
4 |
|a 541.395
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Combinatorial Development Of Solid Catalytic Materials :
|b Design Of High-Throughput Experiments, Data Analysis, Data Mining.
|
260 |
|
|
|b World Scientific
|c 2009.
|
300 |
|
|
|a 1 online resource (192)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover13; -- Contents -- Dedication -- Preface -- Chapter 1. Background of Combinatorial Catalyst Development (M. Baerns) -- Bibliography -- Chapter 2. Approaches in the Development of Heterogeneous Catalysts (M. Baerns) -- 2.1. Fundamental Aspects -- 2.2. High-throughput Technologies for Preparation and Testing in Combinatorial Development of Catalytic Materials -- 2.2.1. Selection of Potential Elements for Defining the Multi-parameter Compositional Space of Catalytic Materials -- 2.2.2. Experimental Tools for Preparing and Testing Large Numbers of Catalytic-material Specimens -- Bibliography -- Chapter 3. Mathematical Methods of Searching for Optimal Catalytic Materials (M. Holena) -- 3.1. Introduction -- 3.2. Statistical Design of Experiments -- 3.3. Optimisation Methods for Empirical Objective Functions -- 3.4. Evolutionary Optimisation: The Main Approach to Seek Optimal Catalysts -- 3.4.1. Dealing with Constraints in Genetic Optimisation -- 3.5. Other Stochastic Optimisation Methods -- 3.6. Deterministic Optimisation -- 3.6.1. Utilizability of Methods with Derivatives in Catalysis -- Bibliography -- Chapter 4. Generating Problem-Tailored Genetic Algorithms for Catalyst Search (M. Holena) -- 4.1. Using a Program Generator 8212; Why and How -- 4.2. Description Language for Optimisation Tasks in Catalysis -- 4.3. Tackling Constrained Mixed Optimisation -- 4.4. A Prototype Implementation -- Bibliography -- Chapter 5. Analysis and Mining of Data Collected in Catalytic Experiments (M. Holena) -- 5.1. Similarity and Difference Between Data Analysis and Mining -- 5.2. Survey of Existing Methods -- 5.2.1. Statistical Methods -- 5.2.2. Extraction of Logical Rules from Data -- 5.3. Case Study with the Synthesis of HCN -- Bibliography -- Chapter 6. Artificial Neural Networks in the Development of Catalytic Materials (M. Holena) -- 6.1. What are Artificial Neural Networks? -- 6.1.1. Network Architecture -- 6.1.2. Important Kinds of Neural Networks -- 6.1.3. Activity of Neurons -- 6.1.4. What do Neural Networks Compute? -- 6.2. Approximation Capability of Neural Networks -- 6.3. Training Neural Networks -- 6.4. Knowledge Obtainable from a Trained Network -- Bibliography -- Chapter 7. Tuning Evolutionary Algorithms with Artificial Neural Networks (M. Holena) -- 7.1. Heuristic Parameters of Genetic Algorithms -- 7.2. Parameter Tuning Based on Virtual Experiments -- 7.3. Case Study with the Oxidative Dehydrogenation of Propane -- Bibliography -- Chapter 8. Improving Neural Network Approximations (M. Holena) -- 8.1. Importance of Choosing the Right Network Architecture -- 8.2. Influence of the Distribution of Training Data -- 8.3. Boosting Neural Networks -- 8.4. Case Study with HCN Synthesis Continued -- Bibliography -- Chapter 9. Applications of Combinatorial Catalyst Development and An Outlook on Future Work (M. Baerns) -- 9.1. Introduction -- 9.2. Experimental Applications of Combinatorial Catalyst Development -- 9.3. Methodology -- 9.4. Conclusions and Outlook -- 9.4.1. Applications of Combinatorial Methodologies in Practice -- 9.4.2. Computer-aided Methods for the Optimisation of Catalyst Composition and Data Mining -- Bibliography -- Index.
|
520 |
|
|
|a The book provides a comprehensive treatment of combinatorial development of heterogeneous catalysts. In particular, two computer-aided approaches that have played a key role in combinatorial catalysis and high-throughput experimentation during the last decade - evolutionary optimization and artificial neural networks - are described. The book is unique in that it describes evolutionary optimization in a broader context of methods of searching for optimal catalytic materials, including statistical design of experiments, as well as presents neural networks in a broader context of data analysis.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Catalysis
|x Computer simulation.
|
650 |
|
0 |
|a Catalysis
|x Mathematical models.
|
650 |
|
6 |
|a Catalyse
|x Simulation par ordinateur.
|
650 |
|
6 |
|a Catalyse
|x Modèles mathématiques.
|
650 |
|
7 |
|a Catalysis
|x Computer simulation
|2 fast
|
650 |
|
7 |
|a Catalysis
|x Mathematical models
|2 fast
|
655 |
|
4 |
|a Electronic resource.
|
720 |
|
|
|a Baerns Manfred Et Al.
|
758 |
|
|
|i has work:
|a Combinatorial development of solid catalytic materials (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGX4X9dgM93r4FXFY6HX3P
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679344
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1679344
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 275985
|
994 |
|
|
|a 92
|b IZTAP
|