Cargando…

Nonlinear Systems Of Partial Differential Equations : Applications To Life And Physical Sciences.

The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: World Scientific 2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 EBOOKCENTRAL_ocn729020139
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|---uuuuu
008 101115s2009 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d EBLCP  |d MHW  |d DEBSZ  |d OCLCQ  |d COCUF  |d OCLCO  |d AGLDB  |d OCLCF  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d OCLCQ  |d ICG  |d INT  |d OCLCQ  |d REC  |d OCLCQ  |d DKC  |d OCLCO  |d AU@  |d OCLCO  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 816582031 
020 |a 1282758357 
020 |a 9781282758353 
020 |a 9789814277709 
020 |a 9814277703 
029 1 |a DEBBG  |b BV044179257 
029 1 |a DEBSZ  |b 407526358 
029 1 |a DEBSZ  |b 445581662 
035 |a (OCoLC)729020139  |z (OCoLC)816582031 
050 4 |a QA377 
072 7 |a PBKJ  |2 bicssc 
082 0 4 |a 515.35 
084 |a SK 540  |2 rvk 
049 |a UAMI 
245 0 0 |a Nonlinear Systems Of Partial Differential Equations :  |b Applications To Life And Physical Sciences. 
260 |b World Scientific  |c 2009. 
300 |a 1 online resource (544) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover13; -- Contents -- Preface -- 1 Positive Solutions for Systems of Two Equations -- 1.1 Introduction -- 1.2 Strictly Positive Coexistence for Diffusive Prey-Predator Systems -- 1.3 Strictly Positive Coexistence for Diffusive Competing Systems -- 1.4 Strictly Positive Coexistence for Diffusive Cooperating Systems -- 1.5 Stability of Steady-States as Time Changes -- Part A: Prey-Predator Case. -- Part B: Competing Species Case. -- 2 Positive Solutions for Large Systems of Equations -- 2.1 Introduction -- 2.2 Synthesizing Large (Biological) Diffusive Systems from Smaller Subsystems -- 2.3 Application to Epidemics of Many Interacting Infected Species -- 2.4 Conditions for Coexistence in Terms of Signs of Principal Eigenvalues of Related Single Equations, Mixed Boundary Data -- 2.5 Positive Steady-States for Large Systems by Index Method -- 2.6 Application to Reactor Dynamics with Temperature Feedback -- 3 Optimal Control for Nonlinear Systems of Partial Differential Equations -- 3.1 Introduction and Preliminary Results for Scalar Equations -- 3.2 Optimal Harvesting-Coefficient Control of Steady-State Prey- Predator Diffusive Volterra-Lotka Systems -- 3.3 Time-Periodic Optimal Control for Competing Parabolic Systems -- 3.4 Optimal Control of an Initial-Boundary Value Problem for Fission Reactor Systems -- 3.5 Optimal Boundary Control of a Parabolic Problem -- 4 Persistence, Upper and Lower Estimates, Blowup, Cross-Diffusion and Degeneracy -- 4.1 Persistence -- 4.2 Upper-Lower Estimates, Attractor Set, Blowup -- 4.3 Diffusion, Self and Cross-Diffusion with No-Flux Boundary Condition -- 4.4 Degenerate and Density-Dependent Diffusions, Non-Extinction in Highly Spatially Heterogenous Environments -- Part A: Weak Upper and Lower Solutions for Degenerate or Non- Degenerate Elliptic Systems. -- Part B: Lower Bounds for Density-Dependent Di.usive Systems with Regionally Large Growth Rates. -- 5 TravelingWaves, Systems ofWaves, Invariant Manifolds, Fluids and Plasma -- 5.1 Traveling Wave Solutions for Competitive and Monotone Systems -- Part A: Existence of TravelingWave Connecting a Semi-Trivial Steady- State to a Coexistence Steady-State. -- Part B: Iterative Method for obtaining Traveling Wave for General Monotone Systems. -- 5.2 Positive Solutions for Systems of Wave Equations and Their Stabilities -- 5.3 Invariant Manifolds for Coupled Navier-Stokes and Second Order Wave Equations -- Part A: Main Theorem for the Existence of Invariant Manifold. -- Part B: Dependence on Initial Conditions, Asymptotic Stability of the Manifold, and Applications. -- 5.4 Existence and Global Bounds for Fluid Equations of Plasma Display Technology -- 6 Appendices -- 6.1 Existence of Solution between Upper and Lower Solutions for Elliptic and Parabolic Systems, Bifurcation Theorems -- 6.2 The Fixed Point Index, Degree Theory and Spectral Radius of Positive Operators -- 6.3 Theorems Involving Maximum Principle, Comparison and Principal Eigenvalues for Positive Operators -- 6.4 Theorems Involving Derivative Maps, Semigroups and Stability -- 6.5 W2,1 p Estimates, Weak Solutions for Parabolic Equations with Mixed Boundary Data, Theorems Related to Optimal Control, Cross-Diffusion and TravelingWave -- Bibliography -- Index. 
520 |a The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W 2p theory. Introductory explanations are included in the appendices for non-expert readers. The first chapter covers a wide range of steady-state and stability results involving pre. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Differential equations, Partial. 
650 0 |a Differential equations, Nonlinear. 
650 6 |a Équations aux dérivées partielles. 
650 6 |a Équations différentielles non linéaires. 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Nichtlineare partielle Differentialgleichung  |2 gnd 
655 4 |a Electronic resource. 
720 |a Leung Anthony W. 
758 |i has work:  |a Nonlinear systems of partial differential equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH94t3m366TYPHhWm76mgq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681229  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686379 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681229 
938 |a ebrary  |b EBRY  |n ebr10422166 
938 |a EBSCOhost  |b EBSC  |n 340553 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 275835 
938 |a YBP Library Services  |b YANK  |n 3511447 
994 |a 92  |b IZTAP