Cargando…

P.G. De Gennes' Impact On Science - Volume I : Solid State And Liquid Crystals.

This publication, in two volumes, is devoted to the scientific impact of the work of Nobel Laureate, Pierre-Gilles de Gennes, one of the greatest scientists of the 20th century. It covers the important fields for which de Gennes was renowned: solid state (magnetism and superconductivity), macroscopi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: World Scientific 2009.
Colección:Series on directions in condensed matter physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover13;
  • Contents
  • Preface
  • 1. Crystal Structures of Insulating Surfaces
  • 1.1 Halide Surfaces
  • 1.1.1 Alkali halide surfaces
  • 1.1.2 Alkaline earth halide surfaces
  • 1.2 Oxide Surfaces
  • 1.2.1 True insulating oxide surfaces
  • 1.2.2 Mixed conducting oxide surfaces
  • 2. Preparation Techniques of Insulating Surfaces
  • 2.1 Ultra High Vacuum.
  • 2.2 Preparation of Bulk Insulating Surfaces
  • 2.2.1 Halide surfaces
  • 2.2.2 Oxide surfaces
  • 2.2.3 Nanostructuring of insulating surfaces
  • 2.3 Deposition of Insulating Films, Metals and Organic Molecules
  • 2.3.1 Thin insulating films
  • 2.3.2 Metal adsorbates on insulators
  • 2.3.3 Organic molecules on insulators
  • 3. Scanning Probe Microscopy in Ultra High Vacuum
  • 3.1 Atomic ForceMicroscopy
  • 3.1.1 Relevant forces in AFM
  • 3.1.2 Contact AFM
  • 3.1.3 Non-contact AFM
  • 3.1.4 Kelvin probe force microscopy
  • 3.2 Scanning Tunneling Microscopy
  • 3.2.1 Scanning tunneling microscopy
  • 3.2.2 Scanning tunneling spectroscopy
  • 3.3 AtomisticModeling of SPM
  • 4. Scanning Probe Microscopy on Bulk Insulating Surfaces
  • 4.1 Halide Surfaces
  • 4.1.1 Alkali halide surfaces
  • 4.1.2 Alkaline earth halide surfaces
  • 4.2 Oxide Surfaces
  • 4.2.1 True insulating oxide surfaces
  • 4.2.2 Mixed conducting oxide surfaces
  • 4.3 Modeling AFM on Bulk Insulating Surfaces
  • 4.3.1 Halide surfaces
  • 4.3.2 Oxide surfaces
  • 5. Scanning Probe Microscopy on Thin Insulating Films
  • 5.1 Halide Films onMetals
  • 5.1.1 Carpet-like growth.
  • 5.1.2 Restructuring and patterning of vicinal surfaces
  • 5.1.3 Fractal growth at low temperatures
  • 5.2 Halide Films on Semiconductors
  • 5.3 Heteroepitaxial Growth of Alkali Halide Films
  • 5.4 Oxide Films
  • 5.5 Modeling AFM on Thin Insulating Films
  • 6. Interaction of Ions, Electrons and Photons with Halide Surfaces
  • 6.1 Ion Bombardment of Alkali Halides
  • 6.2 Electron and Photon Stimulated Desorption
  • 6.2.1 Electron stimulated desorption
  • 6.2.2 Photon stimulated desorption
  • 7. Surface Patterning with Electrons and Photons
  • 7.1 Surface Topography Modification by Electronic Excitations
  • 7.1.1 Layer-by-layer desorption
  • 7.1.2 Coexcitation with visible light
  • 7.2 Nanoscale Pits on Alkali Halide Surfaces
  • 7.2.1 Diffusion equation for F-centers
  • 8. Surface Patterning with Ions
  • 8.1 Ripple Formation by Ion Bombardment
  • 8.1.1 Linear continuum theory for ripple formation
  • 8.1.2 Beyond the continuum theory
  • 8.2 A Case Study: Ion Beam Modi.cations of KBr Surfaces
  • 9. Metal Deposition on Insulating Surfaces
  • 9.1 Metals on Halide Surfaces
  • 9.1.1 Metals on plain halide surfaces
  • 9.1.2 Metals on nanopatterned halide surfaces
  • 9.2 Metals on Oxide Surfaces
  • 9.2.1 Metals on true insulating oxide surfaces
  • 9.2.2 Metals on mixed conducting oxide surfaces
  • 9.3 Metals on Thin Insulating Films
  • 9.3.1 Metals on halide films
  • 9.3.2 Metals on oxide films
  • 9.4 Modeling AFM on Metal Clusters on Insulators
  • 10. Organic Molecules on Insulating Surfaces
  • 10.1 Chemical Structures of Organic Molecules
  • 10.1.1 Fullerene molecules
  • 10.1.2 Porphyrinmolecules
  • 10.1.3 Phthalocyanine molecules
  • 10.1.4 Perylene molecules
  • 10.2 Organic Molecules on Halide Surfaces
  • 10.2.1 Self-assembly of fullerene molecules
  • 10.2.2 Nanoscale pits as molecular tra.