P.G. De Gennes' Impact On Science - Volume I : Solid State And Liquid Crystals.
This publication, in two volumes, is devoted to the scientific impact of the work of Nobel Laureate, Pierre-Gilles de Gennes, one of the greatest scientists of the 20th century. It covers the important fields for which de Gennes was renowned: solid state (magnetism and superconductivity), macroscopi...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
World Scientific
2009.
|
Colección: | Series on directions in condensed matter physics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover13;
- Contents
- Preface
- 1. Crystal Structures of Insulating Surfaces
- 1.1 Halide Surfaces
- 1.1.1 Alkali halide surfaces
- 1.1.2 Alkaline earth halide surfaces
- 1.2 Oxide Surfaces
- 1.2.1 True insulating oxide surfaces
- 1.2.2 Mixed conducting oxide surfaces
- 2. Preparation Techniques of Insulating Surfaces
- 2.1 Ultra High Vacuum.
- 2.2 Preparation of Bulk Insulating Surfaces
- 2.2.1 Halide surfaces
- 2.2.2 Oxide surfaces
- 2.2.3 Nanostructuring of insulating surfaces
- 2.3 Deposition of Insulating Films, Metals and Organic Molecules
- 2.3.1 Thin insulating films
- 2.3.2 Metal adsorbates on insulators
- 2.3.3 Organic molecules on insulators
- 3. Scanning Probe Microscopy in Ultra High Vacuum
- 3.1 Atomic ForceMicroscopy
- 3.1.1 Relevant forces in AFM
- 3.1.2 Contact AFM
- 3.1.3 Non-contact AFM
- 3.1.4 Kelvin probe force microscopy
- 3.2 Scanning Tunneling Microscopy
- 3.2.1 Scanning tunneling microscopy
- 3.2.2 Scanning tunneling spectroscopy
- 3.3 AtomisticModeling of SPM
- 4. Scanning Probe Microscopy on Bulk Insulating Surfaces
- 4.1 Halide Surfaces
- 4.1.1 Alkali halide surfaces
- 4.1.2 Alkaline earth halide surfaces
- 4.2 Oxide Surfaces
- 4.2.1 True insulating oxide surfaces
- 4.2.2 Mixed conducting oxide surfaces
- 4.3 Modeling AFM on Bulk Insulating Surfaces
- 4.3.1 Halide surfaces
- 4.3.2 Oxide surfaces
- 5. Scanning Probe Microscopy on Thin Insulating Films
- 5.1 Halide Films onMetals
- 5.1.1 Carpet-like growth.
- 5.1.2 Restructuring and patterning of vicinal surfaces
- 5.1.3 Fractal growth at low temperatures
- 5.2 Halide Films on Semiconductors
- 5.3 Heteroepitaxial Growth of Alkali Halide Films
- 5.4 Oxide Films
- 5.5 Modeling AFM on Thin Insulating Films
- 6. Interaction of Ions, Electrons and Photons with Halide Surfaces
- 6.1 Ion Bombardment of Alkali Halides
- 6.2 Electron and Photon Stimulated Desorption
- 6.2.1 Electron stimulated desorption
- 6.2.2 Photon stimulated desorption
- 7. Surface Patterning with Electrons and Photons
- 7.1 Surface Topography Modification by Electronic Excitations
- 7.1.1 Layer-by-layer desorption
- 7.1.2 Coexcitation with visible light
- 7.2 Nanoscale Pits on Alkali Halide Surfaces
- 7.2.1 Diffusion equation for F-centers
- 8. Surface Patterning with Ions
- 8.1 Ripple Formation by Ion Bombardment
- 8.1.1 Linear continuum theory for ripple formation
- 8.1.2 Beyond the continuum theory
- 8.2 A Case Study: Ion Beam Modi.cations of KBr Surfaces
- 9. Metal Deposition on Insulating Surfaces
- 9.1 Metals on Halide Surfaces
- 9.1.1 Metals on plain halide surfaces
- 9.1.2 Metals on nanopatterned halide surfaces
- 9.2 Metals on Oxide Surfaces
- 9.2.1 Metals on true insulating oxide surfaces
- 9.2.2 Metals on mixed conducting oxide surfaces
- 9.3 Metals on Thin Insulating Films
- 9.3.1 Metals on halide films
- 9.3.2 Metals on oxide films
- 9.4 Modeling AFM on Metal Clusters on Insulators
- 10. Organic Molecules on Insulating Surfaces
- 10.1 Chemical Structures of Organic Molecules
- 10.1.1 Fullerene molecules
- 10.1.2 Porphyrinmolecules
- 10.1.3 Phthalocyanine molecules
- 10.1.4 Perylene molecules
- 10.2 Organic Molecules on Halide Surfaces
- 10.2.1 Self-assembly of fullerene molecules
- 10.2.2 Nanoscale pits as molecular tra.