Perspectives In Mathematical Science I : Probability And Statistics.
This book presents a collection of invited articles by distinguished probabilists and statisticians on the occasion of the Platinum Jubilee Celebrations of the Indian Statistical Institute - a notable institute with significant achievement in research areas of statistics, probability and mathematics...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
World Scientific
2009.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover13;
- Contents
- Foreword
- Preface
- 1. Entropy and Martingale K.B. Athreya and M.G. Nadkarni
- 1.1. Introduction
- 1.2. Relative Entropy and Gibbs-Boltzmann Measures
- 1.2.1. Entropy Maximization Results
- 1.2.2. Weak Convergence of Gibbs-Boltzmann Distribution
- 1.2.3. Relative Entropy and Conditioning
- 1.3. Measure Free Martingales, Weak Martingales, Martingales
- 1.3.1. Finite Range Case
- 1.3.2. The General Case
- 1.4. Equivalent Martingale Measures
- References
- 2. Marginal Quantiles: Asymptotics for Functions of Order Statistics G.J. Babu
- 2.1. Introduction
- 2.1.1. Streaming Data
- 2.2. Marginal Quantiles
- 2.2.1. Joint Distribution of Marginal Quantiles
- 2.2.2. Weak Convergence of Quantile Process
- 2.3. Regression under Lost Association
- 2.4. Mean of Functions of Order Statistics
- 2.5. Examples
- Acknowledgment
- References
- 3. Statistics on Manifolds with Applications to Shape Spaces R. Bhattacharya and A. Bhattacharya
- 3.1. Introduction
- 3.2. Geometry of Shape Manifolds
- 3.2.1. The Real Projective Space RPd
- 3.2.2. Kendalls (Direct Similarity) Shape Spaces 931;k
- 3.2.3. Reflection (Similarity) Shape Spaces RSk m
- 3.2.4. Affine Shape Spaces ASk m
- 3.2.5. Projective Shape Spaces P931;k13;10;m
- 3.3. Fr180;echet Means on Metric Spaces
- 3.4. Extrinsic Means on Manifolds
- 3.4.1. Asymptotic Distribution of the Extrinsic Sample Mean
- 3.5. Intrinsic Means on Manifolds
- 3.6. Applications
- 3.6.1. Sd
- 3.6.2. RPd
- 3.6.3. 931;k m
- 3.6.4. 931;k2
- 3.6.5. R931;k m
- 3.6.6. A931;k m
- 3.6.7. P0931;k m
- 3.7. Examples
- 3.7.1. Example 1: Gorilla Skulls
- 3.7.2. Example 2: Schizophrenic Children
- 3.7.3. Example 3: Glaucoma Detection
- Acknowledgment
- References
- 4. Reinforcement Learning 8212; A Bridge Between Numerical Methods and Monte Carlo V.S. Borkar
- 4.1. Introduction
- 4.2. Stochastic Approximation
- 4.3. Estimating Stationary Averages
- 4.4. Function Approximation
- 4.5. Estimating Stationary Distribution
- 4.6. Acceleration Techniques
- 4.7. Future Directions
- References
- 5. Factors, Roots and Embeddings of Measures on Lie Groups S.G. Dani
- 5.1. Introduction
- 5.2. Some Basic Properties of Factors and Roots
- 5.3. Factor Sets
- 5.4. Compactness
- 5.5. Roots
- 5.6. One-Parameter Semigroups
- References
- 6. Higher Criticism in the Context of Unknown Distribution, Non-independence and Classi.cation A. Delaigle and P. Hall
- 6.1. Introduction
- 6.2. Methodology
- 6.2.1. Higher-criticism signal detection
- 6.2.2. Generalising and adapting to an unknown null distribution
- 6.2.3. Classifiers based on higher criticism
- 6.3. Theoretical Properties
- 6.3.1. Effectiveness of approximation to hcW by hcW
- 6.3.2. Removing the assumption of independence
- 6.3.3. Delineating good performance
- 6.4. Further Results
- 6.4.1. Alternative constructions of hcW and hcW
- 6.4.2. Advantages of incorporating the threshold
- 6.5. Numerical Properties in the Case of Classification
- 6.6. Technical Arguments
- 6.6.1. Proof of Theorem 6.1
- 6.6.2. Proof of Theorem 6.2
- References
- Appendix
- A.1. Description of the Cross-Validation Procedure
- A.2. Proof of Theorem 6.3.