Cargando…

Modeling By Nonlinear Differential Equations : Dissipative And Conservative Processes.

This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, react...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: World Scientific 2009.
Colección:World Scientific Series on Nonlinear Science Series A.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 EBOOKCENTRAL_ocn729020069
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|---uuuuu
008 101115s2009 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d EBLCP  |d MHW  |d DEBSZ  |d OCLCQ  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d SFB  |d QGK  |d OCLCQ  |d OCLCO 
019 |a 816581895  |a 1259135430 
020 |a 1282757954 
020 |a 9781282757950 
020 |a 9789814271608 
020 |a 9814271608 
020 |a 9786612757952 
020 |a 6612757957 
029 1 |a DEBBG  |b BV044179047 
029 1 |a DEBSZ  |b 405718586 
029 1 |a DEBSZ  |b 445579781 
035 |a (OCoLC)729020069  |z (OCoLC)816581895  |z (OCoLC)1259135430 
050 4 |a QA372 
082 0 4 |a 515.35 
084 |a SK 520  |2 rvk 
084 |a WD 2100  |2 rvk 
049 |a UAMI 
245 0 0 |a Modeling By Nonlinear Differential Equations :  |b Dissipative And Conservative Processes. 
260 |b World Scientific  |c 2009. 
300 |a 1 online resource (240) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific series on nonlinear science. Series A ;  |v vol. 69 
505 0 |a Cover13; -- Contents -- Acknowledgments -- 1. Theme and Contents of this Book -- 2. Processes in Closed and Open Systems -- 2.1 Introduction -- 2.2 Thermodynamics of general systems -- 2.3 Chemical reactions -- 2.4 Autocatalysis in closed and open systems -- 2.4.1 Autocatalysis in closed systems -- 2.4.2 Autocatalysis in the flow reactor -- 3. Dynamics of Molecular Evolution -- 3.1 Introduction -- 3.2 Selection and evolution -- 3.3 Template induced autocatalysis -- 3.3.1 Autocatalytic oligomerization -- 3.3.2 Biopolymer replication -- 3.3.3 Replication and selection -- 3.3.4 Replication and mutation -- 3.3.5 Error thresholds -- 3.4 Replicator equations -- 3.4.1 Schlogl model -- 3.4.2 Fisher's selection equation -- 3.4.3 Symbioses and hypercycles -- 3.5 Unlimited growth and selection -- 4. Relaxation Oscillations -- 4.1 Introduction -- 4.2 Self-exciting relaxation oscillations -- 4.2.1 van der Pol equation -- 4.2.2 Stoker-Haag equation -- 4.3 Current induced neuron oscillations -- 4.4 Bistability and complex structure of harmonically forced relaxation oscillations -- 5. Order and Chaos -- 5.1 Introduction -- 5.2 One dimensional maps -- 5.2.1 Formation of a period window -- 5.2.2 Stability of a period window -- 5.2.3 Topology of one dimensional maps -- 5.3 Lorenz equations -- 5.4 Low dimensional autocatalytic networks -- 5.5 Chua equations -- 6. Reaction Diffusion Dynamics -- 6.1 Introduction -- 6.2 Pulse front solutions of Fisher and related equations -- 6.3 Diffusion driven spatial inhomogeneities -- 6.4 Turing mechanism of chemical pattern formation -- 7. Solitons -- 7.1 Introduction -- 7.2 One dimensional lattice dynamics -- 7.2.1 Korteweg-de Vries equation -- 7.2.2 sine-Gordon equation -- 7.3 Burgers equation -- 8. Neuron Pulse Propagation -- 8.1 Introduction -- 8.2 Properties of a neural pulse -- 8.3 FitzHugh-Nagumo equations -- 8.4 Hodgkin-Huxley equations -- 8.5 An overview -- 9. Time Reversal, Dissipation and Conservation -- 9.1 Introduction -- 9.2 Irreversibility and di usion -- 9.2.1 Theory of random walk -- 9.2.2 Langevin equation and equilibrium fluctuations -- 9.2.3 Newtonian mechanics and asymptotic irreversibility -- 9.3 Reversibility and time recurrence -- 9.3.1 A linear synchronous system -- 9.3.2 Recurrence in nonlinear Hamiltonian systems: Fermi-Pasta-Ulam Model -- 9.4 Complex dynamics and chaos in Newtonian dynamics: H enon-Heiles equations -- Bibliography -- Index. 
520 |a This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, reaction diffusion driven chemical pattern formation, solitons and neuron dynamics. Included is a discussion of processes from the viewpoints of reversibility, reflected by conservative classical mechanics, and irreversibility introduced by the dissipative role of diffusion. Each chapter presents the sub. 
504 |a Includes bibliographical references and index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Differential equations, Partial. 
650 0 |a Mathematical models. 
650 6 |a Équations différentielles non linéaires. 
650 6 |a Équations aux dérivées partielles. 
650 6 |a Modèles mathématiques. 
650 7 |a mathematical models.  |2 aat 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Mathematical models  |2 fast 
655 4 |a Electronic resource. 
720 |a Phillipson Paul Et Al. 
776 |z 981-4271-59-4 
830 0 |a World Scientific Series on Nonlinear Science Series A. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679740  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679740 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 275795 
994 |a 92  |b IZTAP