|
|
|
|
LEADER |
00000cam a2200000 c 4500 |
001 |
EBOOKCENTRAL_ocn716215543 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m d |
007 |
cr ||||||||||| |
008 |
150129s2011 gw o 000 0 eng |
040 |
|
|
|a GWDNB
|b ger
|c GWDNB
|d YDXCP
|d DG1
|d COO
|d B24X7
|d E7B
|d CDX
|d REDDC
|d EBLCP
|d DEBSZ
|d N$T
|d OCLCF
|d IDEBK
|d DEBBG
|d S3O
|d AZK
|d MOR
|d LIP
|d PIFAG
|d ZCU
|d LIV
|d MERUC
|d TEFOD
|d SAV
|d MERER
|d U3W
|d UUM
|d COCUF
|d ICG
|d INT
|d VT2
|d AU@
|d WYU
|d TKN
|d DKC
|d OL$
|d UKCRE
|d VLY
|d BRF
|d UIU
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
015 |
|
|
|a 15,O02
|2 dnb
|
016 |
7 |
|
|2 DE-101
|a 1065804865
|
019 |
|
|
|a 711780360
|a 765144014
|a 769189252
|a 769849270
|a 771999468
|a 772397870
|a 799078712
|a 816879070
|a 852505227
|a 961503244
|a 961597673
|a 962613432
|a 962729284
|a 988429457
|a 991924332
|a 992926383
|a 1004475275
|a 1004783163
|a 1008892615
|a 1013730948
|a 1017950860
|a 1021224489
|a 1055368157
|a 1066410657
|a 1077278673
|a 1081214494
|a 1153518407
|a 1162542199
|
020 |
|
|
|a 9780470979167
|
020 |
|
|
|a 047097916X
|
020 |
|
|
|a 9780470979174
|q (electronic bk.)
|
020 |
|
|
|a 0470979178
|q (electronic bk.)
|
020 |
|
|
|a 9780470979280
|q (electronic bk.)
|
020 |
|
|
|a 0470979283
|q (electronic bk.)
|
020 |
|
|
|z 1283373971
|
020 |
|
|
|z 9781283373975
|
020 |
|
|
|z 9780470688298
|q (hardback)
|
020 |
|
|
|z 0470688297
|
020 |
|
|
|a 9786613373977
|
020 |
|
|
|a 6613373974
|
024 |
3 |
|
|a 9780470979167
|
024 |
8 |
|
|2 urn
|a urn:nbn:de:101:1-201501291327
|
024 |
8 |
|
|a 9786613373977
|
029 |
1 |
|
|a NZ1
|b 15290871
|
029 |
1 |
|
|a NZ1
|b 14257160
|
029 |
1 |
|
|a NZ1
|b 13876188
|
029 |
1 |
|
|a HEBIS
|b 299832619
|
029 |
1 |
|
|a GWDNB
|b 1065804865
|
029 |
1 |
|
|a DEBSZ
|b 449264181
|
029 |
1 |
|
|a DEBSZ
|b 431052387
|
029 |
1 |
|
|a DEBSZ
|b 428124003
|
029 |
1 |
|
|a DEBSZ
|b 397155158
|
029 |
1 |
|
|a DEBSZ
|b 383097274
|
029 |
1 |
|
|a DEBSZ
|b 372823890
|
029 |
1 |
|
|a DEBSZ
|b 365197483
|
029 |
1 |
|
|a DEBBG
|b BV044158652
|
029 |
1 |
|
|a DEBBG
|b BV043393085
|
029 |
1 |
|
|a DEBBG
|b BV041908537
|
029 |
1 |
|
|a CHVBK
|b 480180083
|
029 |
1 |
|
|a CHNEW
|b 000937701
|
029 |
1 |
|
|a CHNEW
|b 000720557
|
029 |
1 |
|
|a AU@
|b 000051576698
|
035 |
|
|
|a (OCoLC)716215543
|z (OCoLC)711780360
|z (OCoLC)765144014
|z (OCoLC)769189252
|z (OCoLC)769849270
|z (OCoLC)771999468
|z (OCoLC)772397870
|z (OCoLC)799078712
|z (OCoLC)816879070
|z (OCoLC)852505227
|z (OCoLC)961503244
|z (OCoLC)961597673
|z (OCoLC)962613432
|z (OCoLC)962729284
|z (OCoLC)988429457
|z (OCoLC)991924332
|z (OCoLC)992926383
|z (OCoLC)1004475275
|z (OCoLC)1004783163
|z (OCoLC)1008892615
|z (OCoLC)1013730948
|z (OCoLC)1017950860
|z (OCoLC)1021224489
|z (OCoLC)1055368157
|z (OCoLC)1066410657
|z (OCoLC)1077278673
|z (OCoLC)1081214494
|z (OCoLC)1153518407
|z (OCoLC)1162542199
|
037 |
|
|
|a 10.1002/9780470979174
|b Wiley InterScience
|n http://www3.interscience.wiley.com
|
037 |
|
|
|a A2E61CF7-B76B-4D51-861E-A456591C3AC1
|b OverDrive, Inc.
|n http://www.overdrive.com
|
041 |
1 |
|
|a eng
|h fre
|
044 |
|
|
|c XA-DE-BW
|
050 |
|
4 |
|a QA76.9.D343
|b T84 2011
|
072 |
|
7 |
|a COM
|x 021030
|2 bisacsh
|
072 |
|
7 |
|a PBT
|2 bicssc
|
082 |
|
4 |
|8 1\p
|a 510
|q DE-101
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Tufféry, Stéphane
|e Verfasser
|4 aut
|
245 |
1 |
0 |
|a Data Mining and Statistics for Decision Making
|c Stéphane Tufféry
|
264 |
|
1 |
|a New York, NY
|b John Wiley & Sons
|c 2011
|
300 |
|
|
|a Online-Ressource.
|
336 |
|
|
|a Text
|b txt
|2 rdacontent/ger
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia/ger
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier/ger
|
347 |
|
|
|a data file
|2 rda
|
490 |
0 |
|
|a Wiley Series in Computational Statistics
|
500 |
|
|
|a Lizenzpflichtig
|
583 |
1 |
|
|a Archivierung/Langzeitarchivierung gewährleistet
|5 DE-101
|2 pdager
|
505 |
0 |
|
|6 880-01
|a Front Matter -- Overview of Data Mining -- The Development of a Data Mining Study -- Data Exploration and Preparation -- Using Commercial Data -- Statistical and Data Mining Software -- An Outline of Data Mining Methods -- Factor Analysis -- Neural Networks -- Cluster Analysis -- Association Analysis -- Classification and Prediction Methods -- An Application of Data Mining: Scoring -- Factors for Success in a Data Mining Project -- Text Mining -- Web Mining -- Appendix A: Elements of Statistics -- Appendix B: Further Reading -- Index.
|
505 |
8 |
|
|a Machine generated contents note: Preface -- Foreword -- Contents -- Overview of data mining -- 1.1. What is data mining? -- 1.2. What is data mining used for? -- 1.3. Data Mining and statistics -- 1.4. Data mining and information technology -- 1.5. Data mining and protection of personal data -- 1.6. Implementation of data mining -- The development of a data mining study -- 2.1. Defining the aims -- 2.2. Listing the existing data -- 2.3. Collecting the data -- 2.4. Exploring and preparing the data -- 2.5. Population segmentation -- 2.6. Drawing up and validating predictive models -- 2.7. Synthesizing predictive models of different segments -- 2.8. Iteration of the preceding steps -- 2.9. Deploying the models -- 2.10. Training the model users -- 2.11. Monitoring the models -- 2.12. Enriching the models -- 2.13. Remarks -- 2.14. Life cycle of a model -- 2.15. Costs of a pilot project -- Data exploration and preparation -- 3.1. The different types of data -- 3.2. Examining the distribution of variables -- 3.3. Detection of rare or missing values -- 3.4. Detection of aberrant values -- 3.5. Detection of extreme values -- 3.6. Tests of normality -- 3.7. Homoscedasticity and heteroscedasticity -- 3.8. Detection of the most discriminating variables -- 3.9. Transformation of variables -- 3.10. Choosing ranges of values of continuous variables -- 3.11. Creating new variables -- 3.12. Detecting interactions 89 -- 3.13. Automatic variable selection -- 3.14. Detection of collinearity -- 3.15. Sampling -- Using commercial data -- 4.1. Data used in commercial applications -- 4.2. Special data -- 4.3. Data used by business sector -- Statistical and data mining software -- 5.1. Types of data mining and statistical software -- 5.2. Essential characteristics of the software -- 5.3. The main software packages -- 5.4. Comparison of R, SAS and IBM SPSS -- 5.5. How to reduce processing time -- An outline of data mining methods -- 6.1. A note on terminology -- 6.2. Classification of the methods -- 6.3. Comparison of the methods -- 6.4. Using these methods in the business world -- Factor analysis -- 7.1. Principal component analysis -- 7.2. Variants of principal component analysis -- 7.3. Correspondence analysis -- 7.4. Multiple correspondence analysis -- Neural networks -- 8.1. General information on neural networks -- 8.2. Structure of a neural network -- 8.3. Choosing the training sample -- 8.4. Some empirical rules for network design -- 8.5. Data normalization -- 8.6. Learning algorithms -- 8.7. The main neural networks -- Automatic clustering methods -- 9.1. Definition of clustering -- 9.2. Applications of clustering -- 9.3. Complexity of clustering -- 9.4. Clustering structures -- 9.5. Some methodological considerations -- 9.6. Comparison of factor analysis and clustering -- 9.7. Intra-class and inter-class inertias -- 9.8. Measurements of clustering quality -- 9.9. Partitioning methods -- 9.10. Hierarchical ascending clustering -- 9.11. Hybrid clustering methods -- 9.12. Neural clustering -- 9.13. Clustering by aggregation of similarities -- 9.14. Clustering of numeric variables -- 9.15. Overview of clustering methods -- Finding associations -- 10.1. Principles -- 10.2. Using taxonomy -- 10.3. Using supplementary variables -- 10.4. Applications -- 10.5. Example of use -- Classification and prediction methods -- 11.1. Introduction -- 11.2. Inductive and transductive methods -- 11.3. Overview of classification and prediction methods -- 11.4. Classification by decision tree -- 11.5. Prediction by decision tree -- 11.6. Classification by discriminant analysis -- 11.7. Prediction by linear regression -- 11.8. Classification by logistic regression -- 11.9. Developments in logistic regression -- 11.10. Bayesian methods -- 11.11. Classification and prediction by neural networks -- 11.12. Classification by support vector machines (SVMs) -- 11.13. Prediction by genetic algorithms -- 11.14. Improving the performance of a predictive model -- 11.15. Bootstrapping and aggregation of models -- 11.16. Using classification and prediction methods -- An application of data mining: scoring -- 12.1. The different types of score -- 12.2. Using propensity scores and risk scores -- 12.3. Methodology -- 12.4. Implementing a strategic score -- 12.5. Implementing an operational score -- 12.6. The kinds of scoring solutions used in a business -- 12.7. An example of credit scoring (data preparation) -- 12.8. An example of credit scoring (modelling by logistic regression) -- 12.9. An example of credit scoring (modelling by DISQUAL discriminant analysis) -- 12.10. A brief history of credit scoring -- Factors for success in a data mining project -- 13.1. The subject -- 13.2. The people -- 13.3. The data -- 13.4. The IT systems -- 13.5. The business culture -- 13.6. Data mining: eight common misconceptions -- 13.7. Return on investment -- Text mining -- 14.1. Definition of text mining -- 14.2. Text sources used -- 14.3. Using text mining -- 14.4. Information retrieval -- 14.5. Information extraction -- 14.6. Multi-type data mining -- Web mining -- 15.1. The aims of web mining -- 15.2. Global analyses -- 15.3. Individual analyses -- 15.4. Personal analyses -- Appendix: Elements of statistics -- 16.1. A brief history -- 16.2. Elements of statistics -- 16.3. Statistical tables -- Further reading -- 17.1. Statistics and data analysis -- 17.2. Data mining and statistical learning -- 17.3. Text mining -- 17.4. Web mining -- 17.5. R software -- 17.6. SAS software -- 17.7. IBM SPSS software -- 17.8. Websites -- Index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Statistical decision.
|
650 |
|
2 |
|a Data Mining
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Prise de décision (Statistique)
|
650 |
|
7 |
|a COMPUTERS
|x Database Management
|x Data Mining.
|2 bisacsh
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Statistical decision
|2 fast
|
653 |
|
|
|a (Produktform)Electronic book text
|
653 |
|
|
|a (BISAC Subject Heading)MAT029040
|
653 |
|
|
|a (VLB-Produktgruppen)TN000
|
653 |
|
|
|a Data mining
|
653 |
|
|
|a Datenanalyse
|
653 |
|
|
|a (VLB-WN)9627: Nonbooks, PBS / Mathematik/Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik
|
758 |
|
|
|a Data mining and statistics for decision making (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCG9gfgjM6ty7PmWGXRfqry
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Druckausg.
|z 9780470688298
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=792450
|z Texto completo
|
883 |
0 |
|
|8 1\p
|a maschinell gebildet
|c 0,984
|d 20150130
|q DE-101
|
880 |
0 |
0 |
|6 505-01/(S
|g Contents note continued:
|g 11.9.1.
|t Logistic regression on individuals with different weights --
|g 11.9.2.
|t Logistic regression with correlated data --
|g 11.9.3.
|t Ordinal logistic regression --
|g 11.9.4.
|t Multinomial logistic regression --
|g 11.9.5.
|t PLS logistic regression --
|g 11.9.6.
|t generalized linear model --
|g 11.9.7.
|t Poisson regression --
|g 11.9.8.
|t generalized additive model --
|g 11.10.
|t Bayesian methods --
|g 11.10.1.
|t naive Bayesian classifier --
|g 11.10.2.
|t Bayesian networks --
|g 11.11.
|t Classification and prediction by neural networks --
|g 11.11.1.
|t Advantages of neural networks --
|g 11.11.2.
|t Disadvantages of neural networks --
|g 11.12.
|t Classification by support vector machines --
|g 11.12.1.
|t Introduction to SVMs --
|g 11.12.2.
|t Example --
|g 11.12.3.
|t Advantages of SVMs --
|g 11.12.4.
|t Disadvantages of SVMs --
|g 11.13.
|t Prediction by genetic algorithms --
|g 11.13.1.
|t Random generation of initial rules --
|g 11.13.2.
|t Selecting the best rules --
|g 11.13.3.
|t Generating new rules --
|g 11.13.4.
|t End of the algorithm --
|g 11.13.5.
|t Applications of genetic algorithms --
|g 11.13.6.
|t Disadvantages of genetic algorithms --
|g 11.14.
|t Improving the performance of a predictive model --
|g 11.15.
|t Bootstrapping and ensemble methods --
|g 11.15.1.
|t Bootstrapping --
|g 11.15.2.
|t Bagging --
|g 11.15.3.
|t Boosting --
|g 11.15.4.
|t Some applications --
|g 11.15.5.
|t Conclusion --
|g 11.16.
|t Using classification and prediction methods --
|g 11.16.1.
|t Choosing the modelling methods --
|g 11.16.2.
|t training phase of a model --
|g 11.16.3.
|t Reject inference --
|g 11.16.4.
|t test phase of a model --
|g 11.16.5.
|t ROC curve, the lift curve and the Gini index --
|g 11.16.6.
|t classification table of a model --
|g 11.16.7.
|t validation phase of a model --
|g 11.16.8.
|t application phase of a model --
|g 12.
|t application of data mining: scoring --
|g 12.1.
|t different types of score --
|g 12.2.
|t Using propensity scores and risk scores --
|g 12.3.
|t Methodology --
|g 12.3.1.
|t Determining the objectives --
|g 12.3.2.
|t Data inventory and preparation --
|g 12.3.3.
|t Creating the analysis base --
|g 12.3.4.
|t Developing a predictive model --
|g 12.3.5.
|t Using the score --
|g 12.3.6.
|t Deploying the score --
|g 12.3.7.
|t Monitoring the available tools --
|g 12.4.
|t Implementing a strategic score --
|g 12.5.
|t Implementing an operational score --
|g 12.6.
|t Scoring solutions used in a business --
|g 12.6.1.
|t In-house or outsourced--
|g 12.6.2.
|t Generic or personalized score --
|g 12.6.3.
|t Summary of the possible solutions --
|g 12.7.
|t example of credit scoring (data preparation) --
|g 12.8.
|t example of credit scoring (modelling by logistic regression) --
|g 12.9.
|t example of credit scoring (modelling by DISQUAL discriminant analysis) --
|g 12.10.
|t brief history of credit scoring --
|t References --
|g 13.
|t Factors for success in a data mining project --
|g 13.1.
|t subject --
|g 13.2.
|t people --
|g 13.3.
|t data --
|g 13.4.
|t IT systems --
|g 13.5.
|t business culture --
|g 13.6.
|t Data mining: eight common misconceptions --
|g 13.6.1.
|t No a priori knowledge is needed --
|g 13.6.2.
|t No specialist staff are needed --
|g 13.6.3.
|t No statisticians are needed (ỳou can just press a button') --
|g 13.6.4.
|t Data mining will reveal unbelievable wonders --
|g 13.6.5.
|t Data mining is revolutionary --
|g 13.6.6.
|t You must use all the available data --
|g 13.6.7.
|t You must always sample --
|g 13.6.8.
|t You must never sample --
|g 13.7.
|t Return on investment --
|g 14.
|t Text mining --
|g 14.1.
|t Definition of text mining --
|g 14.2.
|t Text sources used --
|g 14.3.
|t Using text mining --
|g 14.4.
|t Information retrieval --
|g 14.4.1.
|t Linguistic analysis --
|g 14.4.2.
|t Application of statistics and data mining --
|g 14.4.3.
|t Suitable methods --
|g 14.5.
|t Information extraction --
|g 14.5.1.
|t Principles of information extraction --
|g 14.5.2.
|t Example of application: transcription of business interviews --
|g 14.6.
|t Multi-type data mining --
|g 15.
|t Web mining --
|g 15.1.
|t aims of web mining --
|g 15.2.
|t Global analyses --
|g 15.2.1.
|t What can they be used for--
|g 15.2.2.
|t structure of the log file --
|g 15.2.3.
|t Using the log file --
|g 15.3.
|t Individual analyses --
|g 15.4.
|t Personal analysis --
|g Appendix
|t A Elements of statistics --
|g A.1.
|t brief history --
|g A.1.1.
|t few dates --
|g A.1.2.
|t From statistics ... to data mining --
|g A.2.
|t Elements of statistics --
|g A.2.1.
|t Statistical characteristics --
|g A.2.2.
|t Box and whisker plot --
|g A.2.3.
|t Hypothesis testing --
|g A.2.4.
|t Asymptotic, exact, parametric and non-parametric tests --
|g A.2.5.
|t Confidence interval for a mean: student's r lest --
|g A.2.6.
|t Confidence interval of a frequency (or proportion) --
|g A.2.7.
|t relationship between two continuous variables: the linear correlation coefficient --
|g A.2.8.
|t relationship between two numeric or ordinal variables: Spearman's rank correlation coefficient and Kendall's tau --
|g A.2.9.
|t relationship between n sets of several continuous or binary variables: canonical correlation analysis --
|g A.2.10.
|t relationship between two nominal variables: the Χ2 test --
|g A.2.11.
|t Example of use of the Χ2 test --
|g A.2.12.
|t relationship between two nominal variables: Cramer's coefficient --
|g A.2.13.
|t relationship between a nominal variable and a numeric variable: the variance test (one-way ANOVA test) --
|g A.2.14.
|t cox semi-parametric survival model --
|g A.3.
|t Statistical tables --
|g A.3.1.
|t Table of the standard normal distribution --
|g A.3.2.
|t Table of student's t distribution --
|g A.3.3.
|t Chi-Square table --
|g A.3.4.
|t Table of the Fisher-Snedecor distribution at the 0.05 significance level --
|g A.3.5.
|t Table of the Fisher-Snedecor distribution at the 0.10 significance level --
|g Appendix B
|t Further reading --
|g B.1.
|t Statistics and data analysis --
|g B.2.
|t Data mining and statistical learning --
|g B.3.
|t Text mining --
|g B.4.
|t Web mining --
|g B.5.
|t R software --
|g B.6.
|t SAS software --
|g B.7.
|t IBM SPSS software --
|g B.8.
|t Websites.
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12668239
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3650561
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3588066
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 337397
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 509459
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10510552
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL792450
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 20433834
|
938 |
|
|
|a Books 24x7
|b B247
|n bkb00040918
|
994 |
|
|
|a 92
|b IZTAP
|