Criticisms of the Einstein field equation : the end of the 20th century physics /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge International Science Pub.,
©2011.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Contents
- Chapter 1. Introduction
- Chapter 2. A Review of Einstein-Cartan-Evans (ECE) Field Theory
- 2.1 Introduction
- 2.2 Geometrical principles
- 2.3 The Field and wave equations of ECE theory
- 2.4 Aharonov-Bohm and Phase effects in ECE theory
- 2.5 Tensor and vector laws of classical dynamics and electrodynamics
- 2.6 Spin connection resonance
- 2.7 Effects of gravitation on optics and spectroscopy
- 2.8 Radiative corrections in ECE theory
- 2.9 Summary of advances made by ECE theory, and criticisms of the standard model
- Acknowledgments2.10 Appendix 1: Homogeneous Maxwell-Heaviside equations
- 2.11 Appendix 2: The inhomogeneous equations
- 2.12 Appendix 3: Some examples of Hodge duals in Minkowski space-time
- 2.13 Appendix 4: Standard tensorial formulation of the homogeneous Maxwell-Heaviside field equations
- 2.14 Appendix 5: Illustrating the meaning of the connection with rotation in a plane
- Bibliography
- Chapter 3. Fundamental Errors in the General Theory of Relativity
- 3.1 Introduction
- 3.2 Schwarzschild space-time
- 3.3 Spherical symmetry
- 3.4 Derivation of Schwarzschild space-time3.5 The prohibition of point-mass singularities
- 3.6 Laplace�s alleged black hole
- 3.7 Black hole interactions and gravitational collapse
- 3.8 Further consequences for gravitational waves
- 3.9 Other violations
- 3.10 Three-dimensional spherically symmetric metric manifolds
- first principles
- 3.11 Conclusions
- Dedication
- Bibliography
- Chapter 4 Violation of the Dual Bianchi Identity by Solutions of the Einstein Field Equation
- 4.1 Introduction
- 4.2 Numerical procedure
- 4.3 Results and discussion4.4 Exact solutions of the Einstein field equation
- 4.4.1 Minkowski metric with shifted radial coordinate
- 4.4.2 Schwarzschild metric
- 4.4.3 General Crothers metric
- 4.4.4 Crothers metric with generalized Schwarzschild parameters
- 4.4.5 Crothers metric with Schwarzschild parameters
- 4.4.6 General spherical metric
- 4.4.7 Spherically symmetric metric with perturbation a/r
- 4.4.8 Spherically symmetric metric with general Î?(r)
- 4.4.9 Spherically symmetric metric with off-diagonal elements
- 4.4.10 Reissner-Nordstrom metric
- 4.4.11 Extended Reissner-Weyl metric4.4.12 Kerr metric
- 4.4.13 Kerr-Newman (Charged Kerr metric) with M = 0; Ï? = const:
- 4.4.14 Kerr-Newman (Charged Kerr metric) with a = 0
- 4.4.15 Goedel metric
- 4.4.16 Static De Sitter metric
- 4.4.17 FLRW metric
- 4.4.18 Closed FLRW metric
- 4.4.19 Friedmann Dust metric
- 4.4.20 Kasner metric
- 4.4.21 Generalized FLRW metric
- 4.4.22 Eddington-Finkelstein metric for black holes
- 4.4.23 Kruskal coordinates metric of black hole
- 4.4.24 Einstein-Rosen bridge metric, u coordinates