Cargando…

Criticisms of the Einstein field equation : the end of the 20th century physics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Evans, Myron W. (Myron Wyn), 1950-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge International Science Pub., ©2011.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • Contents
  • Chapter 1. Introduction
  • Chapter 2. A Review of Einstein-Cartan-Evans (ECE) Field Theory
  • 2.1 Introduction
  • 2.2 Geometrical principles
  • 2.3 The Field and wave equations of ECE theory
  • 2.4 Aharonov-Bohm and Phase effects in ECE theory
  • 2.5 Tensor and vector laws of classical dynamics and electrodynamics
  • 2.6 Spin connection resonance
  • 2.7 Effects of gravitation on optics and spectroscopy
  • 2.8 Radiative corrections in ECE theory
  • 2.9 Summary of advances made by ECE theory, and criticisms of the standard model
  • Acknowledgments2.10 Appendix 1: Homogeneous Maxwell-Heaviside equations
  • 2.11 Appendix 2: The inhomogeneous equations
  • 2.12 Appendix 3: Some examples of Hodge duals in Minkowski space-time
  • 2.13 Appendix 4: Standard tensorial formulation of the homogeneous Maxwell-Heaviside field equations
  • 2.14 Appendix 5: Illustrating the meaning of the connection with rotation in a plane
  • Bibliography
  • Chapter 3. Fundamental Errors in the General Theory of Relativity
  • 3.1 Introduction
  • 3.2 Schwarzschild space-time
  • 3.3 Spherical symmetry
  • 3.4 Derivation of Schwarzschild space-time3.5 The prohibition of point-mass singularities
  • 3.6 Laplaceâ€?s alleged black hole
  • 3.7 Black hole interactions and gravitational collapse
  • 3.8 Further consequences for gravitational waves
  • 3.9 Other violations
  • 3.10 Three-dimensional spherically symmetric metric manifolds
  • first principles
  • 3.11 Conclusions
  • Dedication
  • Bibliography
  • Chapter 4 Violation of the Dual Bianchi Identity by Solutions of the Einstein Field Equation
  • 4.1 Introduction
  • 4.2 Numerical procedure
  • 4.3 Results and discussion4.4 Exact solutions of the Einstein field equation
  • 4.4.1 Minkowski metric with shifted radial coordinate
  • 4.4.2 Schwarzschild metric
  • 4.4.3 General Crothers metric
  • 4.4.4 Crothers metric with generalized Schwarzschild parameters
  • 4.4.5 Crothers metric with Schwarzschild parameters
  • 4.4.6 General spherical metric
  • 4.4.7 Spherically symmetric metric with perturbation a/r
  • 4.4.8 Spherically symmetric metric with general Î?(r)
  • 4.4.9 Spherically symmetric metric with off-diagonal elements
  • 4.4.10 Reissner-Nordstrom metric
  • 4.4.11 Extended Reissner-Weyl metric4.4.12 Kerr metric
  • 4.4.13 Kerr-Newman (Charged Kerr metric) with M = 0; Ï? = const:
  • 4.4.14 Kerr-Newman (Charged Kerr metric) with a = 0
  • 4.4.15 Goedel metric
  • 4.4.16 Static De Sitter metric
  • 4.4.17 FLRW metric
  • 4.4.18 Closed FLRW metric
  • 4.4.19 Friedmann Dust metric
  • 4.4.20 Kasner metric
  • 4.4.21 Generalized FLRW metric
  • 4.4.22 Eddington-Finkelstein metric for black holes
  • 4.4.23 Kruskal coordinates metric of black hole
  • 4.4.24 Einstein-Rosen bridge metric, u coordinates