Cargando…

Weyl group multiple Dirichlet series : type A combinatorial theory /

Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Brubaker, Ben, 1976-
Otros Autores: Bump, Daniel, 1952-, Friedberg, Solomon, 1958-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, ©2011.
Colección:Annals of mathematics studies ; no. 175.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn713258718
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 110419s2011 njua ob 001 0 eng d
010 |a  2010037073 
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d MHW  |d YDXCP  |d MTG  |d CDX  |d OCLCQ  |d UMI  |d COO  |d OCLCQ  |d DEBSZ  |d JSTOR  |d OCLCF  |d OCLCQ  |d UIU  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d IOG  |d EZ9  |d VTS  |d ICG  |d VT2  |d CEF  |d OCLCQ  |d LVT  |d UAB  |d WYU  |d STF  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d AJS  |d HS0  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 773204699  |a 1055372859  |a 1063815493  |a 1103281710  |a 1129378821  |a 1153000293 
020 |a 9781400838998  |q (electronic bk.) 
020 |a 1400838991  |q (electronic bk.) 
020 |z 9780691150659 
020 |z 0691150656 
020 |z 9780691150666 
020 |z 0691150664 
024 7 |a 10.1515/9781400838998  |2 doi 
029 1 |a AU@  |b 000051621606 
029 1 |a AU@  |b 000054181172 
029 1 |a CHBIS  |b 010896033 
029 1 |a CHVBK  |b 483397261 
029 1 |a DEBBG  |b BV040901383 
029 1 |a DEBBG  |b BV043102281 
029 1 |a DEBSZ  |b 37828679X 
029 1 |a DEBSZ  |b 379318490 
029 1 |a DEBSZ  |b 381374211 
029 1 |a DEBSZ  |b 421627239 
029 1 |a DEBSZ  |b 445578130 
029 1 |a GBVCP  |b 1003666639 
029 1 |a GBVCP  |b 785358773 
035 |a (OCoLC)713258718  |z (OCoLC)773204699  |z (OCoLC)1055372859  |z (OCoLC)1063815493  |z (OCoLC)1103281710  |z (OCoLC)1129378821  |z (OCoLC)1153000293 
037 |a CL0500000122  |b Safari Books Online 
037 |a 22573/cttztnj  |b JSTOR 
050 4 |a QA295  |b .B876 2011eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 515/.243  |2 22 
049 |a UAMI 
100 1 |a Brubaker, Ben,  |d 1976- 
245 1 0 |a Weyl group multiple Dirichlet series :  |b type A combinatorial theory /  |c Ben Brubaker, Daniel Bump, and Solomon Friedberg. 
260 |a Princeton, N.J. :  |b Princeton University Press,  |c ©2011. 
300 |a 1 online resource (158 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v no. 175 
504 |a Includes bibliographical references (pages 143-147) and index. 
520 |a Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. 
588 0 |a Print version record. 
546 |a In English. 
505 8 |a 20. Crystals and p-adic IntegrationBibliography; Notation; Index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Dirichlet series. 
650 0 |a Weyl groups. 
650 6 |a Séries de Dirichlet. 
650 6 |a Groupes de Weyl. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Dirichlet series  |2 fast 
650 7 |a Weyl groups  |2 fast 
700 1 |a Bump, Daniel,  |d 1952- 
700 1 |a Friedberg, Solomon,  |d 1958- 
758 |i has work:  |a Weyl group multiple Dirichlet series (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGXq6KkvmPVVkFjVPbxHcq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Brubaker, Ben, 1976-  |t Weyl group multiple Dirichlet.  |d Princeton, N.J. : Princeton University Press, ©2011  |z 9780691150659  |w (DLC) 2010037073  |w (OCoLC)666489879 
830 0 |a Annals of mathematics studies ;  |v no. 175. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=664641  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26387935 
938 |a Coutts Information Services  |b COUT  |n 17461668 
938 |a EBL - Ebook Library  |b EBLB  |n EBL664641 
938 |a EBSCOhost  |b EBSC  |n 358317 
938 |a YBP Library Services  |b YANK  |n 3639164 
994 |a 92  |b IZTAP