Cargando…

The shape of inner space : string theory and the geometry of the universe's hidden dimensions /

String theory says we live in a ten-dimensional universe, but that only four are accessible to our everyday senses. According to theorists, the missing six are curled up in bizarre structures known as Calabi-Yau manifolds. Here, Shing-Tung Yau, the man who mathematically proved that these manifolds...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yau, Shing-Tung, 1949-
Otros Autores: Nadis, Steven J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Basic Books, ©2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn701109877
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 110208s2010 nyua ob 001 0 eng d
010 |z  2010009956 
040 |a TEFOD  |b eng  |e pn  |c TEFOD  |d N$T  |d OCLCQ  |d OCLCF  |d MIA  |d YDXCP  |d EBLCP  |d OSU  |d E7B  |d CDX  |d IDEBK  |d DEBSZ  |d AU@  |d RECBK  |d OCLCQ  |d TEFOD  |d OCLCQ  |d AZK  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d D6H  |d UUM  |d STF  |d WRM  |d VTS  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d VLY  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d OCLCO  |d OCLCL  |d EZC  |d VT2  |d INARC  |d OCLCQ  |d OCLCO 
019 |a 667228390  |a 669249030  |a 747531119  |a 781329982  |a 961590813  |a 962698414  |a 988406736  |a 1034893358  |a 1037926894  |a 1038697352  |a 1162470224  |a 1228573426  |a 1290031987 
020 |a 9780465022663  |q (electronic bk.) 
020 |a 0465022669  |q (electronic bk.) 
020 |a 9786612784651 
020 |a 6612784652 
020 |z 9780465020232 
020 |z 0465020232 
020 |a 9781282784659  |q (MyiLibrary) 
020 |a 128278465X 
024 8 |a 9786612784651 
029 1 |a AU@  |b 000048808853 
029 1 |a AU@  |b 000051446531 
029 1 |a DEBBG  |b BV043098227 
029 1 |a DEBSZ  |b 421405244 
029 1 |a DEBSZ  |b 430889593 
029 1 |a GBVCP  |b 803466129 
035 |a (OCoLC)701109877  |z (OCoLC)667228390  |z (OCoLC)669249030  |z (OCoLC)747531119  |z (OCoLC)781329982  |z (OCoLC)961590813  |z (OCoLC)962698414  |z (OCoLC)988406736  |z (OCoLC)1034893358  |z (OCoLC)1037926894  |z (OCoLC)1038697352  |z (OCoLC)1162470224  |z (OCoLC)1228573426  |z (OCoLC)1290031987 
037 |a 278465  |b MIL 
037 |a 5D0ED932-4EB2-4E2B-AFE3-A05AC14DFA12  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA691  |b .Y38 2010eb 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.1  |2 22 
084 |a 33.54  |2 bcl 
084 |a 39.30  |2 bcl 
084 |a 39.22  |2 bcl 
049 |a UAMI 
100 1 |a Yau, Shing-Tung,  |d 1949-  |1 https://id.oclc.org/worldcat/entity/E39PBJwxKfg3FgKCbF4t6cHXBP 
245 1 4 |a The shape of inner space :  |b string theory and the geometry of the universe's hidden dimensions /  |c Shing-tung Yau and Steve Nadis ; illustrations by Xianfeng (David) Gu and Xiaotian (Tim) Yin. 
260 |a New York :  |b Basic Books,  |c ©2010. 
300 |a 1 online resource (xix, 377 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a String theory says we live in a ten-dimensional universe, but that only four are accessible to our everyday senses. According to theorists, the missing six are curled up in bizarre structures known as Calabi-Yau manifolds. Here, Shing-Tung Yau, the man who mathematically proved that these manifolds exist, argues that not only is geometry fundamental to string theory, it is also fundamental to the very nature of our universe. Time and again, where Yau has gone, physics has followed. Now for the first time, readers will follow Yau's penetrating thinking on where we've been, and where mathematics will take us next. A fascinating exploration of a world we are only just beginning to grasp, The Shape of Inner Space will change the way we consider the universe on both its grandest and smallest scales.--From publisher description. 
505 0 |a "Space/time" (poem) -- The shapes of things to come -- A universe in the margins -- Geometry in the natural order -- A new kind of hammer -- Too good to be true -- Proving Calabi -- The DNA of string theory -- Through the looking glass -- Kinks in spacetime -- Back to the real world -- Beyond Calabi-Yau -- The universe unravels -- The search for extra dimensions -- Truth, beauty, and mathematics -- The end of geometry? -- Another day, another donut -- Entering the sanctum -- "A flash in the middle of a long night" (poem). 
588 0 |a Print version record. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Hyperspace. 
650 0 |a String models. 
650 0 |a Fourth dimension. 
650 6 |a Hyperespace. 
650 6 |a Quatrième dimension. 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Fourth dimension  |2 fast 
650 7 |a Hyperspace  |2 fast 
650 7 |a String models  |2 fast 
650 1 7 |a Kosmologie.  |2 gtt 
650 1 7 |a Dimensietheorie.  |2 gtt 
650 1 7 |a Geometrische aspecten.  |2 gtt 
655 0 |a Electronic books. 
655 7 |a dissertations.  |2 aat 
655 7 |a Academic theses  |2 fast 
655 7 |a Academic theses.  |2 lcgft 
655 7 |a Thèses et écrits académiques.  |2 rvmgf 
700 1 |a Nadis, Steven J. 
758 |i has work:  |a The shape of inner space (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFwbyMCq3KYmGdJfBtbfMP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Yau, Shing-Tung, 1949-  |t Shape of inner space.  |d New York : Basic Books, ©2010  |z 9780465020232  |w (DLC) 2010009956  |w (OCoLC)535492236 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=584866  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30466852 
938 |a Coutts Information Services  |b COUT  |n 15487128 
938 |a EBL - Ebook Library  |b EBLB  |n EBL584866 
938 |a ebrary  |b EBRY  |n ebr10413105 
938 |a EBSCOhost  |b EBSC  |n 461208 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 278465 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00601358 
938 |a YBP Library Services  |b YANK  |n 3457493 
938 |a Internet Archive  |b INAR  |n shapeofinnerspac0000yaus 
994 |a 92  |b IZTAP