Cargando…

The generalized Fitting subsystem of a fusion system /

"The notion of a fusion system was first defined and explored by Puig, in the context of modular representation theory. Later, Broto, Levi, and Oliver extended the theory and used it as a tool in homotopy theory. We seek to build a local theory of fusion systems, analogous to the local theory o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aschbacher, Michael, 1944-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 2011, ©2010.
Colección:Memoirs of the American Mathematical Society ; no. 986.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn699507750
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 110131t20112010riu ob 000 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d TFW  |d COD  |d UKMGB  |d OCLCQ  |d OCLCF  |d UIU  |d COO  |d N$T  |d LLB  |d E7B  |d YDXCP  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
016 7 |a 015777145  |2 Uk 
019 |a 852969801  |a 893973779  |a 908065768  |a 922981698 
020 |a 9781470406004 
020 |a 1470406004 
020 |z 9780821853030 
020 |z 0821853031 
029 1 |a AU@  |b 000062344251 
029 1 |a AU@  |b 000069468984 
029 1 |a DEBSZ  |b 452551919 
035 |a (OCoLC)699507750  |z (OCoLC)852969801  |z (OCoLC)893973779  |z (OCoLC)908065768  |z (OCoLC)922981698 
050 4 |a QA174.2  |b .A83 2011 
072 7 |a s1ma  |2 rero 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.2  |2 22 
049 |a UAMI 
100 1 |a Aschbacher, Michael,  |d 1944-  |1 https://id.oclc.org/worldcat/entity/E39PBJcGm66wBrRJJxDHyCgtKd 
245 1 4 |a The generalized Fitting subsystem of a fusion system /  |c Michael Aschbacher. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c 2011, ©2010. 
300 |a 1 online resource (v, 110 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v no. 986 
504 |a Includes bibliographical references (pages 109-110). 
520 3 |a "The notion of a fusion system was first defined and explored by Puig, in the context of modular representation theory. Later, Broto, Levi, and Oliver extended the theory and used it as a tool in homotopy theory. We seek to build a local theory of fusion systems, analogous to the local theory of finite groups, involving normal subsystems and factor systems. Among other results, we define the notion of a simple system, the generalized Fitting subsystem of a fusion system, and prove the L-balance theorem of Gorenstein and Walter for fusion systems. We define a notion of composition series and composition factors, and prove a Jordon-Hölder theorem for fusion systems." 
588 0 |a Print version record. 
505 0 0 |t Introduction  |t Chapter 1. Background  |t Chapter 2. Direct products  |t Chapter 3. $\mathcal {E}_1 \wedge \mathcal {E}_2$  |t Chapter 4. The product of strongly closed subgroups  |t Chapter 5. Pairs of commuting strongly closed subgroups  |t Chapter 6. Centralizers  |t Chapter 7. Characteristic and subnormal subsystems  |t Chapter 8. $T \mathcal {F}_0$  |t Chapter 9. Components  |t Chapter 10. Balance  |t Chapter 11. The fundamental group of $\mathcal {F}^c$  |t Chapter 12. Factorizing morphisms  |t Chapter 13. Composition series  |t Chapter 14. Constrained systems  |t Chapter 15. Solvable fusion systems  |t Chapter 16. Fusion systems in simple groups  |t Chapter 17. An example. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Sylow subgroups. 
650 0 |a Algebraic topology. 
650 6 |a Sous-groupes de Sylow. 
650 6 |a Topologie algébrique. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Algebraic topology  |2 fast 
650 7 |a Sylow subgroups  |2 fast 
758 |i has work:  |a The generalized fitting subsystem of a fusion system (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG7d3Vpr44PRkX7b6Bcfhd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |a Aschbacher, Michael, 1944-  |t Generalized fitting subsystem of a fusion system.  |d Providence, R.I. : American Mathematical Society, 2011  |z 9780821853030  |w (DLC) 2010038097  |w (OCoLC)664259317 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 986. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114128  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114128 
938 |a ebrary  |b EBRY  |n ebr11039747 
938 |a EBSCOhost  |b EBSC  |n 843477 
938 |a YBP Library Services  |b YANK  |n 12371987 
994 |a 92  |b IZTAP