Cargando…

Tensor analysis with applications in mechanics /

"The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one con...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lebedev, L. P.
Otros Autores: Cloud, Michael J., Eremeyev, Victor A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2010.
Edición:[New ed.].
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn696298097
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 110112s2010 si a ob 001 0 eng d
010 |z  2010281916 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d E7B  |d OCLCQ  |d STF  |d EBLCP  |d OCLCQ  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d WAU  |d OCLCQ  |d GA0  |d OCLCF  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d UKCRE  |d VLY  |d UIU  |d OCLCO  |d DST  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 681872621  |a 764546190  |a 848042238  |a 961497926  |a 962567716  |a 968287357  |a 988520257  |a 992088072  |a 995008558  |a 1037730892  |a 1038684337  |a 1065114905  |a 1153563590  |a 1162444394  |a 1241800464  |a 1290082474  |a 1300473867 
020 |a 9789814313995  |q (electronic bk.) 
020 |a 9814313998  |q (electronic bk.) 
020 |z 9789814313124  |q (cloth) 
020 |z 9814313122  |q (cloth) 
020 |a 1282763873 
020 |a 9781282763876 
020 |a 9786612763878 
020 |a 6612763876 
029 1 |a AU@  |b 000054177041 
029 1 |a DEBBG  |b BV043106853 
029 1 |a DEBBG  |b BV044156156 
029 1 |a DEBSZ  |b 372737412 
029 1 |a DEBSZ  |b 379321289 
029 1 |a DEBSZ  |b 421673486 
029 1 |a DEBSZ  |b 442816375 
029 1 |a DEBSZ  |b 44557271X 
029 1 |a NZ1  |b 13868727 
035 |a (OCoLC)696298097  |z (OCoLC)681872621  |z (OCoLC)764546190  |z (OCoLC)848042238  |z (OCoLC)961497926  |z (OCoLC)962567716  |z (OCoLC)968287357  |z (OCoLC)988520257  |z (OCoLC)992088072  |z (OCoLC)995008558  |z (OCoLC)1037730892  |z (OCoLC)1038684337  |z (OCoLC)1065114905  |z (OCoLC)1153563590  |z (OCoLC)1162444394  |z (OCoLC)1241800464  |z (OCoLC)1290082474  |z (OCoLC)1300473867 
050 4 |a TA347.T4  |b L43 2010eb 
072 7 |a MAT  |x 033000  |2 bisacsh 
082 0 4 |a 515/.63  |2 22 
049 |a UAMI 
100 1 |a Lebedev, L. P. 
245 1 0 |a Tensor analysis with applications in mechanics /  |c Leonid P. Lebedev, Michael J. Cloud, Victor A. Eremeyev. 
250 |a [New ed.]. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2010. 
300 |a 1 online resource (xiv, 363 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 355-357) and index. 
505 0 |a 1. Preliminaries. 1.1. The vector concept revisited. 1.2. A first look at tensors. 1.3. Assumed background. 1.4. More on the notion of a vector. 1.5. Problems -- 2. Transformations and vectors. 2.1. Change of basis. 2.2. Dual bases. 2.3. Transformation to the reciprocal frame. 2.4. Transformation between general frames. 2.5. Covariant and contravariant components. 2.6. The cross product in index notation. 2.7. Norms on the space of vectors. 2.8. Closing remarks. 2.9. Problems -- 3. Tensors. 3.1. Dyadic quantities and tensors. 3.2. Tensors from an operator viewpoint. 3.3. Dyadic components under transformation. 3.4. More dyadic operations. 3.5. Properties of second-order tensors. 3.6. Eigenvalues and eigenvectors of a second-order symmetric tensor. 3.7. The Cayley-Hamilton theorem. 3.8. Other properties of second-order tensors. 3.9. Extending the Dyad idea. 3.10. Tensors of the fourth and higher orders. 3.11. Functions of tensorial arguments. 3.12. Norms for tensors, and some spaces. 3.13. Differentiation of tensorial functions. 3.14. Problems -- 4. Tensor fields. 4.1. Vector fields. 4.2. Differentials and the nabla operator. 4.3. Differentiation of a vector function. 4.4. Derivatives of the frame vectors. 4.5. Christoffel coefficients and their properties. 4.6. Covariant differentiation. 4.7. Covariant derivative of a second-order tensor. 4.8. Differential operations. 4.9. Orthogonal coordinate systems. 4.10. Some formulas of integration. 4.11. Problems -- 5. Elements of differential geometry. 5.1. Elementary facts from the theory of curves. 5.2. The torsion of a curve. 5.3. Frenet-Serret equations. 5.4. Elements of the theory of surfaces. 5.5. The second fundamental form of a surface. 5.6. Derivation formulas. 5.7. Implicit representation of a curve; contact of curves. 5.8. Osculating paraboloid. 5.9. The principal curvatures of a surface. 5.10. Surfaces of revolution. 5.11. Natural equations of a curve. 5.12. A word about rigor. 5.13. Conclusion. 5.14. Problems -- 6. Linear elasticity. 6.1. Stress tensor. 6.2. Strain tensor. 6.3. Equation of motion. 6.4. Hooke's law. 6.5. Equilibrium equations in displacements. 6.6. Boundary conditions and boundary value problems. 6.7. Equilibrium equations in stresses. 6.8. Uniqueness of solution for the boundary value problems of elasticity. 6.9. Betti's reciprocity theorem. 6.10. Minimum total energy principle. 6.11. Ritz's method. 6.12. Rayleigh's variational principle. 6.13. Plane waves. 6.14. Plane problems of elasticity. 6.15. Problems -- 7. Linear elastic shells. 7.1. Some useful formulas of surface theory. 7.2. Kinematics in a neighborhood of [symbol]. 7.3. Shell equilibrium equations. 7.4. Shell deformation and strains; Kirchhoff's hypotheses. 7.5. Shell energy. 7.6. Boundary conditions. 7.7. A few remarks on the Kirchhoff-Love theory. 7.8. Plate theory. 7.9. On Non-classical theories of plates and shells. 
520 |a "The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions. A tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. This book is a clear, concise, and self-contained treatment of tensors, tensor fields, and their applications. The book contains practically all the material on tensors needed for applications. It shows how this material is applied in mechanics, covering the foundations of the linear theories of elasticity and elastic shells. The main results are all presented in the first four chapters. The remainder of the book shows how one can apply these results to differential geometry and the study of various types of objects in continuum mechanics such as elastic bodies, plates, and shells. Each chapter of this new edition is supplied with exercises and problems - most with solutions, hints, or answers to help the reader progress. An extended appendix serves as a handbook-style summary of all important formulas contained in the book"--Provided by publisher. 
588 0 |a Print version record. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Calculus of tensors. 
650 6 |a Calcul tensoriel. 
650 7 |a MATHEMATICS  |x Vector Analysis.  |2 bisacsh 
650 7 |a Calculus of tensors  |2 fast 
700 1 |a Cloud, Michael J. 
700 1 |a Eremeyev, Victor A. 
758 |i has work:  |a Tensor analysis with applications in mechanics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGG8gKBd3QRWFKywQrXcKb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Lebedev, L.P.  |t Tensor analysis with applications in mechanics.  |b [New ed.].  |d Singapore ; Hackensack, NJ : World Scientific, ©2010  |z 9789814313124  |w (OCoLC)639101770 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=731049  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL731049 
938 |a ebrary  |b EBRY  |n ebr10422203 
938 |a EBSCOhost  |b EBSC  |n 340814 
938 |a YBP Library Services  |b YANK  |n 3511597 
994 |a 92  |b IZTAP