Cargando…

Vistas of special functions II /

This book (Vista II), is a sequel to Vistas of Special Functions (World Scientific, 2007), in which the authors made a unification of several formulas scattered around the relevant literature under the guiding principle of viewing them as manifestations of the functional equations of associated zeta...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chakraborty, Kalyan
Otros Autores: Kanemitsu, Shigeru, Tsukada, Haruo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, 2007.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn694144343
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 101117s2007 njuac ob 001 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d CNCGM  |d FVL  |d OCLCQ  |d DEBSZ  |d OCLCO  |d OCLCQ  |d EBLCP  |d OCLCF  |d OCLCQ  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d UKCRE  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 712995130  |a 719420489  |a 743436991  |a 748608607  |a 879550805  |a 961535311  |a 962632228  |a 988439195  |a 992068251  |a 1037756959  |a 1038694105  |a 1153542134 
020 |a 9789814273985  |q (e-book) 
020 |a 9814273988  |q (e-book) 
020 |a 981427397X 
020 |a 9789814273978 
020 |z 9789814273978 
020 |z 9789812707741 
020 |z 9812707743 
029 1 |a AU@  |b 000053264771 
029 1 |a DEBBG  |b BV044179697 
029 1 |a DEBSZ  |b 372802451 
029 1 |a DEBSZ  |b 407526722 
029 1 |a DEBSZ  |b 445556560 
029 1 |a NZ1  |b 14243406 
035 |a (OCoLC)694144343  |z (OCoLC)712995130  |z (OCoLC)719420489  |z (OCoLC)743436991  |z (OCoLC)748608607  |z (OCoLC)879550805  |z (OCoLC)961535311  |z (OCoLC)962632228  |z (OCoLC)988439195  |z (OCoLC)992068251  |z (OCoLC)1037756959  |z (OCoLC)1038694105  |z (OCoLC)1153542134 
050 4 |a QA351  |b .C43 2007eb 
082 0 4 |a 515.5  |a 515.7 
049 |a UAMI 
100 1 |a Chakraborty, Kalyan. 
245 1 0 |a Vistas of special functions II /  |c Kalyan Chakraborty, Shigeru Kanemitsu, Haruo Tsukada. 
260 |a New Jersey :  |b World Scientific,  |c 2007. 
300 |a 1 online resource (xii, 215 pages) :  |b illustrations, portraits 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Preface; Contents; 1. The theory of Bernoulli and allied polynomials; 2. The theory of the gamma and related functions; 2.1 Gamma function; 2.2 The Euler digamma function; 3. The theory of the Hurwitz-Lerch zeta-functions; 3.1 Introduction; 3.2 Integral representations; 3.3 A formula of Ramanujan; 3.4 Some definite integrals; 3.5 The functional equation; 4. The theory of Bernoulli polynomilas via zeta-functions; 5. The theory of the gamma and related functions via zeta-functions; 5.1 Derivatives of the Hurwitz zeta-function. 
505 8 |a 5.2 Asymptotic formulas for the Hurwitz and related zetafunctions in the second variable5.3 An application of the Euler digamma function; 5.4 The first circle; 6. The theory of Bessel functions and the Epstein zeta-functions; 6.1 Introduction and the theory of Bessel functions; 6.2 The theory of Epstein zeta-functions; 6.3 Lattice zeta-functions; 6.4 Bessel series expansions for Epstein zeta-functions; 7. Fourier series and Fourier transforms; 7.1 Fourier series; 7.2 Integral transforms; 7.3 Fourier transform; 7.4 Mellin transform; 8. Around Dirichlet's L-functions. 
505 8 |a 8.1 The theory of periodic Dirichlet series8.2 The Dirichlet class number formula; 8.3 Proof of the theorems; Appendix A Complex functions; A.1 Function series; A.2 Residue theorem and its applications; Appendix B Summation formulas and convergence theorems; B.1 Summation formula and its applications; B.2 Application to the Riemann zeta-function; Bibliography; Index. 
520 |a This book (Vista II), is a sequel to Vistas of Special Functions (World Scientific, 2007), in which the authors made a unification of several formulas scattered around the relevant literature under the guiding principle of viewing them as manifestations of the functional equations of associated zeta-functions. In Vista II, which maintains the spirit of the theory of special functions through zeta-functions, the authors base their theory on a theorem which gives some arithmetical Fourier series as intermediate modular relations - avatars of the functional equations. Vista II gives an organic an. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Functions, Special. 
650 0 |a Bernoulli polynomials. 
650 6 |a Fonctions spéciales. 
650 6 |a Polynômes de Bernoulli. 
650 7 |a MATHEMATICS.  |2 bisac 
650 7 |a Algebra / General.  |2 bisac 
650 7 |a Bernoulli polynomials  |2 fast 
650 7 |a Functions, Special  |2 fast 
650 7 |a Mathematics.  |2 hilcc 
650 7 |a Physical Sciences & Mathematics.  |2 hilcc 
650 7 |a Calculus.  |2 hilcc 
700 1 |a Kanemitsu, Shigeru. 
700 1 |a Tsukada, Haruo. 
776 0 8 |i Print version:  |a Chakraborty, Kalyan.  |t Vistas of Special Functions Ii.  |d Singapore : World Scientific Publishing Company, ©2009  |z 9789814273978 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681775  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681775 
938 |a ebrary  |b EBRY  |n ebr10422650 
994 |a 92  |b IZTAP