|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBOOKCENTRAL_ocn694144343 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
101117s2007 njuac ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCQ
|d CNCGM
|d FVL
|d OCLCQ
|d DEBSZ
|d OCLCO
|d OCLCQ
|d EBLCP
|d OCLCF
|d OCLCQ
|d COCUF
|d MOR
|d PIFAG
|d ZCU
|d MERUC
|d OCLCQ
|d U3W
|d STF
|d WRM
|d ICG
|d INT
|d OCLCQ
|d DKC
|d OCLCQ
|d UKCRE
|d HS0
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 712995130
|a 719420489
|a 743436991
|a 748608607
|a 879550805
|a 961535311
|a 962632228
|a 988439195
|a 992068251
|a 1037756959
|a 1038694105
|a 1153542134
|
020 |
|
|
|a 9789814273985
|q (e-book)
|
020 |
|
|
|a 9814273988
|q (e-book)
|
020 |
|
|
|a 981427397X
|
020 |
|
|
|a 9789814273978
|
020 |
|
|
|z 9789814273978
|
020 |
|
|
|z 9789812707741
|
020 |
|
|
|z 9812707743
|
029 |
1 |
|
|a AU@
|b 000053264771
|
029 |
1 |
|
|a DEBBG
|b BV044179697
|
029 |
1 |
|
|a DEBSZ
|b 372802451
|
029 |
1 |
|
|a DEBSZ
|b 407526722
|
029 |
1 |
|
|a DEBSZ
|b 445556560
|
029 |
1 |
|
|a NZ1
|b 14243406
|
035 |
|
|
|a (OCoLC)694144343
|z (OCoLC)712995130
|z (OCoLC)719420489
|z (OCoLC)743436991
|z (OCoLC)748608607
|z (OCoLC)879550805
|z (OCoLC)961535311
|z (OCoLC)962632228
|z (OCoLC)988439195
|z (OCoLC)992068251
|z (OCoLC)1037756959
|z (OCoLC)1038694105
|z (OCoLC)1153542134
|
050 |
|
4 |
|a QA351
|b .C43 2007eb
|
082 |
0 |
4 |
|a 515.5
|a 515.7
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chakraborty, Kalyan.
|
245 |
1 |
0 |
|a Vistas of special functions II /
|c Kalyan Chakraborty, Shigeru Kanemitsu, Haruo Tsukada.
|
260 |
|
|
|a New Jersey :
|b World Scientific,
|c 2007.
|
300 |
|
|
|a 1 online resource (xii, 215 pages) :
|b illustrations, portraits
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; Contents; 1. The theory of Bernoulli and allied polynomials; 2. The theory of the gamma and related functions; 2.1 Gamma function; 2.2 The Euler digamma function; 3. The theory of the Hurwitz-Lerch zeta-functions; 3.1 Introduction; 3.2 Integral representations; 3.3 A formula of Ramanujan; 3.4 Some definite integrals; 3.5 The functional equation; 4. The theory of Bernoulli polynomilas via zeta-functions; 5. The theory of the gamma and related functions via zeta-functions; 5.1 Derivatives of the Hurwitz zeta-function.
|
505 |
8 |
|
|a 5.2 Asymptotic formulas for the Hurwitz and related zetafunctions in the second variable5.3 An application of the Euler digamma function; 5.4 The first circle; 6. The theory of Bessel functions and the Epstein zeta-functions; 6.1 Introduction and the theory of Bessel functions; 6.2 The theory of Epstein zeta-functions; 6.3 Lattice zeta-functions; 6.4 Bessel series expansions for Epstein zeta-functions; 7. Fourier series and Fourier transforms; 7.1 Fourier series; 7.2 Integral transforms; 7.3 Fourier transform; 7.4 Mellin transform; 8. Around Dirichlet's L-functions.
|
505 |
8 |
|
|a 8.1 The theory of periodic Dirichlet series8.2 The Dirichlet class number formula; 8.3 Proof of the theorems; Appendix A Complex functions; A.1 Function series; A.2 Residue theorem and its applications; Appendix B Summation formulas and convergence theorems; B.1 Summation formula and its applications; B.2 Application to the Riemann zeta-function; Bibliography; Index.
|
520 |
|
|
|a This book (Vista II), is a sequel to Vistas of Special Functions (World Scientific, 2007), in which the authors made a unification of several formulas scattered around the relevant literature under the guiding principle of viewing them as manifestations of the functional equations of associated zeta-functions. In Vista II, which maintains the spirit of the theory of special functions through zeta-functions, the authors base their theory on a theorem which gives some arithmetical Fourier series as intermediate modular relations - avatars of the functional equations. Vista II gives an organic an.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Functions, Special.
|
650 |
|
0 |
|a Bernoulli polynomials.
|
650 |
|
6 |
|a Fonctions spéciales.
|
650 |
|
6 |
|a Polynômes de Bernoulli.
|
650 |
|
7 |
|a MATHEMATICS.
|2 bisac
|
650 |
|
7 |
|a Algebra / General.
|2 bisac
|
650 |
|
7 |
|a Bernoulli polynomials
|2 fast
|
650 |
|
7 |
|a Functions, Special
|2 fast
|
650 |
|
7 |
|a Mathematics.
|2 hilcc
|
650 |
|
7 |
|a Physical Sciences & Mathematics.
|2 hilcc
|
650 |
|
7 |
|a Calculus.
|2 hilcc
|
700 |
1 |
|
|a Kanemitsu, Shigeru.
|
700 |
1 |
|
|a Tsukada, Haruo.
|
776 |
0 |
8 |
|i Print version:
|a Chakraborty, Kalyan.
|t Vistas of Special Functions Ii.
|d Singapore : World Scientific Publishing Company, ©2009
|z 9789814273978
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681775
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1681775
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10422650
|
994 |
|
|
|a 92
|b IZTAP
|