Cargando…

Complex variables /

Complex Variables covers topics ranging from complex numbers to point sets in the complex plane, elementary functions, straight lines and circles, simple and conformal transformations, and zeros and singularities. Cauchy's theorem, Taylor's theorem, Laurent's theorem, contour integrat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chillingworth, H. R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, [1973]
Edición:[1st ed.].
Colección:Commonwealth and international library. Mathematical topics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn680180697
003 OCoLC
005 20240329122006.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 101107s1973 enka ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d UIU  |d OCLCF  |d N$T  |d EBLCP  |d DEBSZ  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d LUN  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 625026887  |a 894790878  |a 974615234  |a 1153465279  |a 1409000175 
020 |a 9781483139951  |q (electronic bk.) 
020 |a 1483139956  |q (electronic bk.) 
020 |z 0080169384 
020 |z 9780080169385 
020 |z 0080169392  |q (pbk.) 
020 |z 9780080169392  |q (pbk.) 
029 1 |a AU@  |b 000055746303 
029 1 |a CHBIS  |b 010730494 
029 1 |a CHVBK  |b 369217683 
029 1 |a DEBSZ  |b 446065528 
035 |a (OCoLC)680180697  |z (OCoLC)625026887  |z (OCoLC)894790878  |z (OCoLC)974615234  |z (OCoLC)1153465279  |z (OCoLC)1409000175 
042 |a dlr 
050 4 |a QA331  |b .C49 1973 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a s1ma  |2 rero 
080 0 |a 513.317 
082 0 4 |a 515/.9 
084 |a 31.42  |2 bcl 
084 |a 32-XX  |2 msc 
049 |a UAMI 
100 1 |a Chillingworth, H. R. 
245 1 0 |a Complex variables /  |c by H.R. Chillingworth. 
250 |a [1st ed.]. 
260 |a Oxford ;  |a New York :  |b Pergamon Press,  |c [1973] 
300 |a 1 online resource (ix, 269 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The commonwealth and international library. Mathematical topics 
504 |a Includes bibliographical references (page 255). 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Complex Variables; Copyright Page; Table of Contents; INTRODUCTION; CHAPTER 1. COMPLEX NUMBERS; 1.1. The Complex Plane; 1.2. Modulus; 1.3. Amplitude; 1.4. Number Pairs; 1.5. Addition; 1.6. Scalar Multiplication; 1.7. Subtraction; 1.8. Multiplication; 1.9. Division; 1.10. An Alternative Notation; 1.11. An Algebraic Approach; 1.12. Complex Numbers as an Extension of the Real Number Field; 1.13. Complex Conjugates; 1.14. The Triangle Inequality; 1.15. De Moivre's Theorem; Exercises; CHAPTER 2. POINT SETS IN THE COMPLEX PLANE. SEQUENCES. LIMITS. 
505 8 |a 2.1. Point Sets: Finite, Countable, and Non-countable Sets. Real Intervals2.2. Bounded and Unbounded Sets on the Real Line; 2.3. The Bolzano-Weierstrass Property; 2.4. Bounded and Unbounded Sets in the Complex Plane; 2.5. Neighbourhoods. Open Sets; 2.6. Limit Points; 2.7. Closed Sets; 2.8. Boundary Points; 2.9. Closure; 2.10. Sequences; 2.11. Convergence; 2.12. Divergence; 2.13. Boundedness of Convergent Sequences; 2.14. A Test for Convergence; 2.15. Cauchy Sequences of Real Numbers; 2.16. Cauchy Sequences of Complex Numbers; 2.17. Non-decreasing Real Sequences; Exercises. 
505 8 |a CHAPTER 3. INFINITE SERIES. TESTS FOR CONVERGENCE3.1. The Sum of an Infinite Series; 3.2. Summability; 3.3. Testing for Convergence or Divergence; 3.4. The Comparison Test; 3.5. d'Alembert's Ratio Test; 3.6. Upper and Lower Limits; 3.7. Cauchy's Root Test; 3.8. The Integral Test; 3.9. Series with Negative or Complex Terms; 3.10. Absolute Convergence; 3.11. Other Tests; 3.12. Multiplication of Series; Exercises; CHAPTER 4. FUNCTIONS OF A COMPLEX VARIABLE; 4.1. The Definition of a Function; 4.2. Continuity; 4.3. Differentiability; 4.4. The Cauchy-Riemann Equations. 
505 8 |a 4.5. The Cauchy-Riemann Equations. Sufficiency4.6. Analytic Functions; 4.7. Laplace's Equation; 4.8. Orthogonal Families of Curves; Exercises; CHAPTER 5. ELEMENTARY FUNCTIONS; 5.1. Polynomials; 5.2. Rational Functions; 5.3. The Exponential Function; 5.4. Sine and Cosine; 5.5. The Link between the Exponential and Trigonometric Functions; 5.6. de Moivre's Theorem; 5.7. Hyperbolic Functions; 5.8. The Logarithmic Function; 5.9. More General Power Functions; 5.10. The Expression of a Regular Function as a Series; 5.11. Differentiability of Power Series. 
505 8 |a 5.12. Repeated Differentiation of an Infinite Series5.13. Inverse Functions; Exercises; CHAPTER 6. STRAIGHT LINE AND CIRCLE; 6.1. The Standard Equation of a Straight Line; 6.2. Other Forms of the Equation; 6.3. The Circle; Exercises; CHAPTER 7. SIMPLE TRANSFORMATIONS; 7.1. Translation; 7.2. Reflection; 7.3. Rotation; 7.4. Magnification; 7.5. Glide Reflection; 7.6. Shear; 7.7. Inversion; 7.8. The Point at Infinity; Exercises; CHAPTER 8. CONFORMAL TRANSFORMATIONS; 8.1. Regular Transformations; 8.2. The Bilinear Transformation; 8.3. Straight Lines and Circles; 8.4. The Mapping of a Domain. 
520 |a Complex Variables covers topics ranging from complex numbers to point sets in the complex plane, elementary functions, straight lines and circles, simple and conformal transformations, and zeros and singularities. Cauchy's theorem, Taylor's theorem, Laurent's theorem, contour integration, and miscellaneous theorems are also discussed. This volume consists of 14 chapters, the first of which introduces the theory of complex numbers and their development either from an algebraic or from a geometrical viewpoint. Emphasis is on the complex plane, modulus, amplitude, number pairs, complex conjugates. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Functions of complex variables. 
650 6 |a Fonctions d'une variable complexe. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Functions of complex variables  |2 fast 
650 7 |a Komplexe Variable  |2 gnd 
650 1 7 |a Complexe variabelen.  |2 gtt 
653 0 |a Functions  |a of  |a complex  |a variables 
758 |i has work:  |a Complex variables (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3XtbcDvfjr7jvhmVJy3Km  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Chillingworth, H.R.  |t Complex variables.  |b [1st ed.].  |d Oxford, New York, Pergamon Press [1973]  |w (DLC) 72086178  |w (OCoLC)605059 
830 0 |a Commonwealth and international library.  |p Mathematical topics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1828900  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1828900 
938 |a EBSCOhost  |b EBSC  |n 882368 
938 |a YBP Library Services  |b YANK  |n 12292068 
994 |a 92  |b IZTAP