Cargando…

Chaos : from simple models to complex systems /

Chaos : from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introducti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cencini, Massimo
Otros Autores: Cecconi, Fabio, Vulpiani, A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, NJ : World Scientific, ©2010.
Colección:Series on advances in statistical mechanics ; v. 17.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn671654987
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 101025s2010 njua ob 001 0 eng d
010 |a  2010487062 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d FVL  |d OCLCQ  |d UIU  |d OCLCO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d NLGGC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d M8D  |d UKAHL  |d ZCU  |d UKCRE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB047978  |2 bnb 
016 7 |a 015521081  |2 Uk 
019 |a 719420425  |a 743436970  |a 748608510  |a 961497984  |a 962567438  |a 988408568  |a 992060274  |a 1037739905  |a 1038685840  |a 1055369415  |a 1062896545  |a 1081220416  |a 1153516902  |a 1228545671  |a 1240523915  |a 1249224766  |a 1253406158  |a 1272924715 
020 |a 9789814277662  |q (electronic bk.) 
020 |a 9814277665  |q (electronic bk.) 
020 |z 9789814277655 
020 |z 9814277657 
029 1 |a AU@  |b 000051354445 
029 1 |a DEBBG  |b BV043100322 
029 1 |a DEBSZ  |b 372802125 
029 1 |a DEBSZ  |b 421676043 
029 1 |a NZ1  |b 14243329 
035 |a (OCoLC)671654987  |z (OCoLC)719420425  |z (OCoLC)743436970  |z (OCoLC)748608510  |z (OCoLC)961497984  |z (OCoLC)962567438  |z (OCoLC)988408568  |z (OCoLC)992060274  |z (OCoLC)1037739905  |z (OCoLC)1038685840  |z (OCoLC)1055369415  |z (OCoLC)1062896545  |z (OCoLC)1081220416  |z (OCoLC)1153516902  |z (OCoLC)1228545671  |z (OCoLC)1240523915  |z (OCoLC)1249224766  |z (OCoLC)1253406158  |z (OCoLC)1272924715 
050 4 |a Q172.5.C45  |b C43 2010eb 
072 7 |a MAT  |x 007000  |2 bisacsh 
082 0 4 |a 515.39  |2 22 
049 |a UAMI 
100 1 |a Cencini, Massimo. 
245 1 0 |a Chaos :  |b from simple models to complex systems /  |c Massimo Cencini, Fabio Cecconi, Angelo Vulpiani. 
260 |a Hackensack, NJ :  |b World Scientific,  |c ©2010. 
300 |a 1 online resource (xx, 460 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Series on advances in statistical mechanics ;  |v v. 17 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Introduction to dynamical systems and chaos. 1. First encounter with chaos. 1.1. Prologue. 1.2. The nonlinear pendulum. 1.3. The damped nonlinear pendulum. 1.4. The vertically driven and damped nonlinear pendulum. 1.5. What about the predictability of pendulum evolution? 1. 6. Epilogue. 2. The language of dynamical systems. 2.1. Ordinary Differential Equations (ODE). 2.2. Discrete time dynamical systems : maps. 2.3. The role of dimension. 2.4. Stability theory. 2.5. Exercises. 3. Examples of chaotic behaviors. 3.1. The logistic map. 3.2. The Lorenz model. 3.3. The Hénon-Heiles system. 3.4. What did we learn and what will we learn? 3.5. Closing remark. 3.6. Exercises. 4. Probabilistic approach to chaos. 4.1. An informal probabilistic approach. 4.2. Time evolution of the probability density. 4.3. Ergodicity. 4.4. Mixing. 4.5. Markov chains and chaotic maps. 4.6. Natural measure. 4.7. Exercises. 5. Characterization of chaotic dynamical systems. 5.1. Strange attractors. 5.2. Fractals and multifractals. 5.3. Characteristic Lyapunov exponents. 5.4. Exercises. 6. From order to chaos in dissipative systems. 6.1. The scenarios for the transition to turbulence. 6.2. The period doubling transition. 6.3. Transition to chaos through intermittency : Pomeau-Manneville scenario. 6.4. A mathematical remark. 6.5. Transition to turbulence in real systems. 6.6. Exercises. 7. Chaos in Hamiltonian systems. 7.1. The integrability problem. 7.2. Kolmogorov-Arnold-Moser theorem and the survival of tori. 7.3. Poincaré-Birkhoff theorem and the fate of resonant tori. 7.4. Chaos around separatrices. 7.5. Melnikov's theory. 7.6. Exercises -- Advanced topics and applications : from information theory to turbulence. 8. Chaos and information theory. 8.1. Chaos, randomness and information. 8.2. Information theory, coding and compression. 8.3. Algorithmic complexity. 8.4. Entropy and complexity in chaotic systems. 8.5. Concluding remarks. 8.6. Exercises. 9. Coarse-grained information and large scale predictability. 9.1. Finite-resolution versus infinite-resolution descriptions. 9.2. [symbol]-entropy in information theory : lossless versus lossy coding. 9.3. [symbol]-entropy in dynamical systems and stochastic processes. 9.4. The finite size lyapunov exponent (FSLE). 9.5. Exercises. 10. Chaos in numerical and laboratory experiments. 10.1. Chaos in silico. 10.2. Chaos detection in experiments. 10.3. Can chaos be distinguished from noise? 10.4. Prediction and modeling from data. 11. Chaos in low dimensional systems. 11.1. Celestial mechanics. 11.2. Chaos and transport phenomena in fluids. 11.3. Chaos in population biology and chemistry. 11.4. Synchronization of chaotic systems. 12. Spatiotemporal chaos. 12.1. Systems and models for spatiotemporal chaos. 12.2. The thermodynamic limit. 12.3. Growth and propagation of space-time perturbations. 12.4. Non-equilibrium phenomena and spatiotemporal chaos. 12.5. Coarse-grained description of high dimensional chaos. 13. Turbulence as a dynamical system problem. 13.1. Fluids as dynamical systems. 13.2. Statistical mechanics of ideal fluids and turbulence phenomenology. 13.3. From partial differential equations to ordinary differential equations. 13.4. Predictability in turbulent systems. 14. Chaos and statistical mechanics : Fermi-Pasta-Ulam a case study. 14.1. An influential unpublished paper. 14.2. A random walk on the role of ergodicity and chaos for equilibrium statistical mechanics. 14.3. Final remarks. 
520 |a Chaos : from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as : information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Chaotic behavior in systems. 
650 0 |a Dynamics. 
650 6 |a Chaos. 
650 6 |a Dynamique. 
650 7 |a kinetics (dynamics)  |2 aat 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Chaotic behavior in systems  |2 fast 
650 7 |a Dynamics  |2 fast 
700 1 |a Cecconi, Fabio. 
700 1 |a Vulpiani, A. 
776 0 8 |i Print version:  |a Cencini, Massimo.  |t Chaos.  |d Hackensack, NJ : World Scientific, ©2010  |z 9789814277655  |w (OCoLC)317922141 
830 0 |a Series on advances in statistical mechanics ;  |v v. 17. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679519  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686377 
938 |a ebrary  |b EBRY  |n ebr10422181 
938 |a EBSCOhost  |b EBSC  |n 340555 
938 |a YBP Library Services  |b YANK  |n 3511445 
994 |a 92  |b IZTAP