Cargando…

Lectures on advanced mathematical methods for physicists /

This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics (including string theory), while the second has applications in gauge theory...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Mukhi, Sunil, Mukunda, N.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, 2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn670429732
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 101018s2010 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d STF  |d IDEBK  |d OCLCQ  |d EBLCP  |d OCLCQ  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d PHADU  |d AGLDB  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB0A2694  |2 bnb 
016 7 |a 015636020  |2 Uk 
019 |a 729020972  |a 953678454  |a 1055389950  |a 1064148181  |a 1081296417  |a 1228570304 
020 |a 9789814299749  |q (electronic bk.) 
020 |a 981429974X  |q (electronic bk.) 
020 |z 9789814299732 
020 |z 9814299731 
029 1 |a AU@  |b 000051377879 
029 1 |a DEBBG  |b BV043137162 
029 1 |a DEBBG  |b BV044156266 
029 1 |a DEBSZ  |b 372737374 
029 1 |a DEBSZ  |b 379321831 
029 1 |a DEBSZ  |b 421673672 
029 1 |a DEBSZ  |b 44281674X 
029 1 |a DEBSZ  |b 445573031 
029 1 |a NZ1  |b 13868709 
035 |a (OCoLC)670429732  |z (OCoLC)729020972  |z (OCoLC)953678454  |z (OCoLC)1055389950  |z (OCoLC)1064148181  |z (OCoLC)1081296417  |z (OCoLC)1228570304 
050 4 |a QC20  |b .L43 2010eb 
072 7 |a SCI  |x 055000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a PHU  |2 bicssc 
082 0 4 |a 530  |2 22 
049 |a UAMI 
245 0 0 |a Lectures on advanced mathematical methods for physicists /  |c Sunil Mukhi, N. Mukunda. 
260 |a New Jersey :  |b World Scientific,  |c 2010. 
300 |a 1 online resource (viii, 278 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 273-274) and index. 
505 0 |a 1. Topology. 1.1. Preliminaries. 1.2. Topological spaces. 1.3. Metric spaces. 1.4. Basis for a topology. 1.5. Closure. 1.6. Connected and compact spaces. 1.7. Continuous functions. 1.8. Homeomorphism. 1.9. Separability -- 2. Homotopy. 2.1. Loops and homotopies. 2.2. The fundamental group. 2.3. Homotopy type and contractibility. 2.4. Higher homotopy groups -- 3. Differentiable manifolds I. 3.1. The definition of a manifold. 3.2. Differentiation of functions. 3.3. Orient ability. 3.4. Calculus on manifolds : vector and tensor fields. 3.5. Calculus on manifolds : differential forms. 3.6. Properties of differential forms. 3.7. More about vectors and forms -- 4. Differentiable manifolds II. 4.1. Riemannian geometry. 4.2. Frames. 4.3. Connections, curvature and torsion. 4.4. The volume form. 4.5. Isometry. 4.6. Integration of differential forms. 4.7. Stokes' theorem. 4.8. The Laplacian on forms -- 5. Homology and cohomology. 5.1. Simplicial homology. 5.2. De Rham cohomology. 5.3. Harmonic forms and de Rham cohomology -- 6. Fibre bundles. 6.1. The concept of a fibre bundle. 6.2. Tangent and cotangent bundles. 6.3. Vector bundles and principal bundles -- 7. Review of groups and related structures. 7.1. Definition of a group. 7.2. Conjugate elements, equivalence classes. 7.3. Subgroups and cosets. 7.4. Invariant (normal) subgroups, the factor group. 7.5. Abelian groups, commutator subgroup. 7.6. Solvable, nilpotent, semisimple and simple groups. 7.7. Relationships among groups. 7.8. Ways to combine groups -- direct and semidirect products. 7.9. Topological groups, Lie groups, compact Lie groups -- 8. Review of group representations. 8.1. Definition of a representation. 8.2. Invariant subspaces, reducibility, decomposability. 8.3. Equivalence of representations, Schur's lemma. 8.4. Unitary and orthogonal representations. 8.5. Contragredient, adjoint and complex conjugate representations. 8.6. Direct products of group representations -- 9. Lie groups and Lie algebras. 9.1. Local coordinates in a Lie group. 9.2. Analysis of associativity. 9.3. One-parameter subgroups and canonical coordinates. 9.4. Integrability conditions and structure constants. 9.5. Definition of a (real) Lie algebra : Lie algebra of a given Lie group. 9.6. Local reconstruction of Lie group from Lie algebra. 9.7. Comments on the G[symbol])[symbol] relationship. 9.8. Various kinds of and operations with Lie algebras -- 10. Linear representations of Lie algebras -- 11. Complexification and classification of Lie algebras. 11.1. Complexification of a real Lie algebra. 11.2. Solvability, Levi's theorem, and Cartan's analysis of complex (semi) simple Lie algebras. 11.3. The real compact simple Lie algebras -- 12. Geometry of roots for compact simple Lie algebras -- 13. Positive roots, simple roots, Dynkin diagrams. 13.1. Positive roots. 13.2. Simple roots and their properties. 13.3. Dynkin diagrams -- 14. Lie algebras and Dynkin diagrams for SO(2l), SO(2l+1), USp(2l), SU(l+1). 14.1. The SO(2l) family -- D[symbol] of Cartan. 14.2. The SO(2l+1) family -- B[symbol] of Cartan. 14.3. The USp(2l) family -- C[symbol] of Cartan. 14.4. The SU(l+1) family -- A[symbol] of Cartan. 14.5. Coincidences for low dimensions and connectedness -- 15. Complete classification of all CSLA simple root systems. 15.1. Series of lemmas. 15.2. The allowed graphs [symbol]. 15.3. The exceptional groups -- 16. Representations of compact simple Lie algebras. 16.1. Weights and multiplicities. 16.2. Actions of E[symbol] and SU(2)[symbol] -- the Weyl group. 16.3. Dominant weights, highest weight of a UIR. 16.4. Fundamental UIR's, survey of all UIR's. 16.5. Fundamental UIR's for A[symbol], B[symbol], C[symbol], D[symbol]. 16.6. The elementary UIR's. 16.7. Structure of states within a UIR -- 17. Spinor representations for real orthogonal groups. 17.1. The Dirac algebra in even dimensions. 17.2. Generators, weights and reducibility of U(S) -- the spinor UIR's of D[symbol]. 17.3. Conjugation properties of spinor UIR's of D[symbol]. 17.4. Remarks on antisymmetric tensors under D[symbol] = SO(2l). 17.5. The spinor UIR's of B[symbol] = SO(2l+[symbol]). 17.6. Antisymmetric tensors under B[symbol] = SO(2l+1) -- 18. Spinor representations for real pseudo orthogonal groups. 18.1. Definition of SO(q, p) and notational matters. 18.2. Spinor representations S([symbol]) of SO(p, q) for p + q [symbol] 2l. 18.3. Representations related to S([symbol]). 18.4. Behaviour of the irreducible spinor representations S[symbol]. 18.5. Spinor representations of SO(p, q) for p+q = 2l+1. 18.6. Dirac, Weyl and Majorana spinors for SO(p, q). 
520 |a This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics (including string theory), while the second has applications in gauge theory and particle physics, integrable systems and nuclear physics. Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and de Rham cohomology as well as fibre bundles, particularly tangent and cotangent bundles. Part II starts with a review of group theory, followed by the basics of representation theory. A thorough description of Lie groups and algebras is presented with their structure constants and linear representations. Root systems and their classifications are detailed, and this section of the book concludes with the description of representations of simple Lie algebras, emphasizing spinor representations of orthogonal and pseudo-orthogonal groups. The style of presentation is succinct and precise. Involved mathematical proofs that are not of primary importance to physics student are omitted. The book aims to provide the reader access to a wide variety of sources in the current literature, in addition to being a textbook of advanced mathematical methods for physicists. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical physics. 
650 6 |a Physique mathématique. 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a Mathematical physics  |2 fast 
700 1 |a Mukhi, Sunil. 
700 1 |a Mukunda, N. 
758 |i has work:  |a Lectures on advanced mathematical methods for physicists (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGMWh4TXJf4ybQBbFcFvXm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Lectures on advanced mathematical methods for physicists.  |d New Jersey : World Scientific, 2010  |z 9789814299732  |w (OCoLC)496951805 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=731187  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686558 
938 |a EBL - Ebook Library  |b EBLB  |n EBL731187 
938 |a ebrary  |b EBRY  |n ebr10422164 
938 |a EBSCOhost  |b EBSC  |n 340796 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 276364 
938 |a YBP Library Services  |b YANK  |n 3511574 
994 |a 92  |b IZTAP