|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn669166165 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
101008s2010 njua ob 001 0 eng d |
010 |
|
|
|z 2010003429
|
040 |
|
|
|a DG1
|b eng
|e pn
|c DG1
|d N$T
|d YDXCP
|d CDX
|d DG1
|d OCLCQ
|d COO
|d E7B
|d OCLCQ
|d EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d IDEBK
|d DEBBG
|d OCLCQ
|d S3O
|d OCLCQ
|d AZK
|d LOA
|d COCUF
|d DG1
|d MOR
|d LIP
|d PIFAG
|d ZCU
|d OCLCQ
|d MERUC
|d OCLCQ
|d U3W
|d OCLCQ
|d STF
|d WRM
|d ICG
|d INT
|d NRAMU
|d VT2
|d AU@
|d OCLCQ
|d WYU
|d OCLCQ
|d DKC
|d OCLCQ
|d HS0
|d OCLCQ
|d UKCRE
|d VLY
|d OCLCQ
|d SFB
|d OCLCO
|d OCLCQ
|d INARC
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 657205820
|a 660082584
|a 662453144
|a 733732323
|a 816570149
|a 860527712
|a 961534124
|a 962631716
|a 966147441
|a 972592338
|a 972852711
|a 988449376
|a 991994209
|a 1037931427
|a 1038626629
|a 1045527649
|a 1064071505
|a 1081294657
|a 1153518382
|a 1162597632
|a 1228600860
|a 1290112143
|a 1300787685
|a 1303515604
|a 1391536326
|a 1409365796
|
020 |
|
|
|a 9780470640425
|
020 |
|
|
|a 0470640421
|
020 |
|
|
|a 9780470640418
|q (electronic bk.)
|
020 |
|
|
|a 0470640413
|q (electronic bk.)
|
020 |
|
|
|a 9780470582466
|q (cloth)
|
020 |
|
|
|a 0470582464
|q (cloth)
|
020 |
|
|
|a 1282707779
|
020 |
|
|
|a 9781282707771
|
020 |
|
|
|a 9786612707773
|
020 |
|
|
|a 6612707771
|
024 |
7 |
|
|a 10.1002/9780470640425
|2 doi
|
024 |
8 |
|
|a 9786612707773
|
029 |
1 |
|
|a AU@
|b 000046756372
|
029 |
1 |
|
|a AU@
|b 000053276974
|
029 |
1 |
|
|a AU@
|b 000060067523
|
029 |
1 |
|
|a CHBIS
|b 010880108
|
029 |
1 |
|
|a CHNEW
|b 000602401
|
029 |
1 |
|
|a CHNEW
|b 000936677
|
029 |
1 |
|
|a CHVBK
|b 480169845
|
029 |
1 |
|
|a DEBBG
|b BV041906896
|
029 |
1 |
|
|a DEBBG
|b BV043392305
|
029 |
1 |
|
|a DEBBG
|b BV044146208
|
029 |
1 |
|
|a DEBSZ
|b 372814123
|
029 |
1 |
|
|a DEBSZ
|b 379316293
|
029 |
1 |
|
|a DEBSZ
|b 430877498
|
029 |
1 |
|
|a DEBSZ
|b 484993909
|
029 |
1 |
|
|a HEBIS
|b 29981565X
|
029 |
1 |
|
|a NZ1
|b 13938366
|
029 |
1 |
|
|a NZ1
|b 15341431
|
035 |
|
|
|a (OCoLC)669166165
|z (OCoLC)657205820
|z (OCoLC)660082584
|z (OCoLC)662453144
|z (OCoLC)733732323
|z (OCoLC)816570149
|z (OCoLC)860527712
|z (OCoLC)961534124
|z (OCoLC)962631716
|z (OCoLC)966147441
|z (OCoLC)972592338
|z (OCoLC)972852711
|z (OCoLC)988449376
|z (OCoLC)991994209
|z (OCoLC)1037931427
|z (OCoLC)1038626629
|z (OCoLC)1045527649
|z (OCoLC)1064071505
|z (OCoLC)1081294657
|z (OCoLC)1153518382
|z (OCoLC)1162597632
|z (OCoLC)1228600860
|z (OCoLC)1290112143
|z (OCoLC)1300787685
|z (OCoLC)1303515604
|z (OCoLC)1391536326
|z (OCoLC)1409365796
|
037 |
|
|
|a 10.1002/9780470640425
|b Wiley InterScience
|n http://www3.interscience.wiley.com
|
050 |
|
4 |
|a T57.84
|b .Y36 2010
|
072 |
|
7 |
|a TEC
|x 009000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 035000
|2 bisacsh
|
072 |
|
7 |
|a PBD
|2 bicssc
|
082 |
0 |
4 |
|a 620.001/5196
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Yang, Xin-She.
|
245 |
1 |
0 |
|a Engineering optimization :
|b an introduction with metaheuristic applications /
|c Xin-She Yang.
|
260 |
|
|
|a Hoboken, N.J. :
|b John Wiley,
|c ©2010.
|
300 |
|
|
|a 1 online resource (xxvii, 347 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|6 880-01
|a Front Matter -- Foundations of Optimization and Algorithms. A Brief History of Optimization -- Engineering Optimization -- Mathematical Foundations -- Classic Optimization Methods I -- Classic Optimization Methods II -- Convex Optimization -- Calculus of Variations -- Random Number Generators -- Monte Carlo Methods -- Random Walk and Markov Chain -- Metaheuristic Algorithms. Genetic Algorithms -- Simulated Annealing -- Ant Algorithms -- Bee Algorithms -- Particle Swarm Optimization -- Harmony Search -- Firefly Algorithm -- Applications. Multiobjective Optimization -- Engineering Applications -- Appendix A: Test Problems in Optimization -- Appendix B: MATLAB Programs -- Appendix C: Glossary -- Appendix D: Problem Solutions -- References -- Index.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insigh.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Heuristic programming.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
0 |
|a Engineering mathematics.
|
650 |
|
6 |
|a Programmation heuristique.
|
650 |
|
6 |
|a Optimisation mathématique.
|
650 |
|
6 |
|a Mathématiques de l'ingénieur.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Engineering (General)
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Engineering mathematics
|2 fast
|
650 |
|
7 |
|a Heuristic programming
|2 fast
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|
758 |
|
|
|i has work:
|a Engineering Optimization (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCH64Yq4CJHQ7rDv9Fh8qHC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Yang, Xin-She.
|t Engineering optimization.
|d Hoboken, N.J. : John Wiley, ©2010
|z 9780470582466
|w (DLC) 2010003429
|w (OCoLC)500823432
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=565130
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g pt. I
|t FOUNDATIONS OF OPTIMIZATION AND ALGORITHMS --
|g 1.
|t Brief History of Optimization --
|g 1.1.
|t Before 1900 --
|g 1.2.
|t Twentieth Century --
|g 1.3.
|t Heuristics and Metaheuristics --
|t Exercises --
|g 2.
|t Engineering Optimization --
|g 2.1.
|t Optimization --
|g 2.2.
|t Type of Optimization --
|g 2.3.
|t Optimization Algorithms --
|g 2.4.
|t Metaheuristics --
|g 2.5.
|t Order Notation --
|g 2.6.
|t Algorithm Complexity --
|g 2.7.
|t No Free Lunch Theorems --
|t Exercises --
|g 3.
|t Mathematical Foundations --
|g 3.1.
|t Upper and Lower Bounds --
|g 3.2.
|t Basic Calculus --
|g 3.3.
|t Optimality --
|g 3.3.1.
|t Continuity and Smoothness --
|g 3.3.2.
|t Stationary Points --
|g 3.3.3.
|t Optimality Criteria --
|g 3.4.
|t Vector and Matrix Norms --
|g 3.5.
|t Eigenvalues and Definiteness --
|g 3.5.1.
|t Eigenvalues --
|g 3.5.2.
|t Defmiteness --
|g 3.6.
|t Linear and Affine Functions --
|g 3.6.1.
|t Linear Functions --
|g 3.6.2.
|t Affine Functions --
|g 3.6.3.
|t Quadratic Form --
|g 3.7.
|t Gradient and Hessian Matrices --
|g 3.7.1.
|t Gradient --
|g 3.7.2.
|t Hessian --
|g 3.7.3.
|t Function approximations --
|g 3.7.4.
|t Optimality of multivariate functions --
|g 3.8.
|t Convexity --
|g 3.8.1.
|t Convex Set --
|g 3.8.2.
|t Convex Functions --
|t Exercises --
|g 4.
|t Classic Optimization Methods I --
|g 4.1.
|t Unconstrained Optimization --
|g 4.2.
|t Gradient-Based Methods --
|g 4.2.1.
|t Newton's Method --
|g 4.2.2.
|t Steepest Descent Method --
|g 4.2.3.
|t Line Search --
|g 4.2.4.
|t Conjugate Gradient Method --
|g 4.3.
|t Constrained Optimization --
|g 4.4.
|t Linear Programming --
|g 4.5.
|t Simplex Method --
|g 4.5.1.
|t Basic Procedure --
|g 4.5.2.
|t Augmented Form --
|g 4.6.
|t Nonlinear Optimization --
|g 4.7.
|t Penalty Method --
|g 4.8.
|t Lagrange Multipliers --
|g 4.9.
|t Karush-Kuhn-Tucker Conditions --
|t Exercises --
|g 5.
|t Classic Optimization Methods II --
|g 5.1.
|t BFGS Method --
|g 5.2.
|t Nelder-Mead Method --
|g 5.2.1.
|t Simplex --
|g 5.2.2.
|t Nelder-Mead Downhill Simplex --
|g 5.3.
|t Trust-Region Method --
|g 5.4.
|t Sequential Quadratic Programming --
|g 5.4.1.
|t Quadratic Programming --
|g 5.4.2.
|t Sequential Quadratic Programming --
|t Exercises --
|g 6.
|t Convex Optimization --
|g 6.1.
|t KKT Conditions --
|g 6.2.
|t Convex Optimization Examples --
|g 6.3.
|t Equality Constrained Optimization --
|g 6.4.
|t Barrier Functions --
|g 6.5.
|t Interior-Point Methods --
|g 6.6.
|t Stochastic and Robust Optimization --
|t Exercises --
|g 7.
|t Calculus of Variations --
|g 7.1.
|t Euler-Lagrange Equation --
|g 7.1.1.
|t Curvature --
|g 7.1.2.
|t Euler-Lagrange Equation --
|g 7.2.
|t Variations with Constraints --
|g 7.3.
|t Variations for Multiple Variables --
|g 7.4.
|t Optimal Control --
|g 7.4.1.
|t Control Problem --
|g 7.4.2.
|t Pontryagin's Principle --
|g 7.4.3.
|t Multiple Controls --
|g 7.4.4.
|t Stochastic Optimal Control --
|t Exercises --
|g 8.
|t Random Number Generators --
|g 8.1.
|t Linear Congruential Algorithms --
|g 8.2.
|t Uniform Distribution --
|g 8.3.
|t Other Distributions --
|g 8.4.
|t Metropolis Algorithms --
|t Exercises --
|g 9.
|t Monte Carlo Methods --
|g 9.1.
|t Estimating π --
|g 9.2.
|t Monte Carlo Integration --
|g 9.3.
|t Importance of Sampling --
|t Exercises --
|g 10.
|t Random Walk and Markov Chain --
|g 10.1.
|t Random Process --
|g 10.2.
|t Random Walk --
|g 10.2.1.
|t 1D Random Walk --
|g 10.2.2.
|t Random Walk in Higher Dimensions --
|g 10.3.
|t Levy Flights --
|g 10.4.
|t Markov Chain --
|g 10.5.
|t Markov Chain Monte Carlo --
|g 10.5.1.
|t Metropolis-Hastings Algorithms --
|g 10.5.2.
|t Random Walk --
|g 10.6.
|t Markov Chain and Optimisation --
|t Exercises --
|g pt. II
|t METAHEURISTIC ALGORITHMS --
|g 11.
|t Genetic Algorithms --
|g 11.1.
|t Introduction --
|g 11.2.
|t Genetic Algorithms --
|g 11.2.1.
|t Basic Procedure --
|g 11.2.2.
|t Choice of Parameters --
|g 11.3.
|t Implementation --
|t Exercises --
|g 12.
|t Simulated Annealing --
|g 12.1.
|t Annealing and Probability --
|g 12.2.
|t Choice of Parameters --
|g 12.3.
|t SA Algorithm --
|g 12.4.
|t Implementation --
|t Exercises --
|g 13.
|t Ant Algorithms --
|g 13.1.
|t Behaviour of Ants --
|g 13.2.
|t Ant Colony Optimization --
|g 13.3.
|t Double Bridge Problem --
|g 13.4.
|t Virtual Ant Algorithm --
|t Exercises --
|g 14.
|t Bee Algorithms --
|g 14.1.
|t Behavior of Honey Bees --
|g 14.2.
|t Bee Algorithms --
|g 14.2.1.
|t Honey Bee Algorithm --
|g 14.2.2.
|t Virtual Bee Algorithm --
|g 14.2.3.
|t Artificial Bee Colony Optimization --
|g 14.3.
|t Applications --
|t Exercises --
|g 15.
|t Particle Swarm Optimization --
|g 15.1.
|t Swarm Intelligence --
|g 15.2.
|t PSO algorithms --
|g 15.3.
|t Accelerated PSO --
|g 15.4.
|t Implementation --
|g 15.4.1.
|t Multimodal Functions --
|g 15.4.2.
|t Validation --
|g 15.5.
|t Constraints --
|t Exercises --
|g 16.
|t Harmony Search --
|g 16.1.
|t Music-Based Algorithms --
|g 16.2.
|t Harmony Search --
|g 16.3.
|t Implementation --
|t Exercises --
|g 17.
|t Firefly Algorithm --
|g 17.1.
|t Behaviour of Fireflies --
|g 17.2.
|t Firefly-Inspired Algorithm --
|g 17.2.1.
|t Firefly Algorithm --
|g 17.2.2.
|t Light Intensity and Attractiveness --
|g 17.2.3.
|t Scaling and Global Optima --
|g 17.2.4.
|t Two Special Cases --
|g 17.3.
|t Implementation --
|g 17.3.1.
|t Multiple Global Optima --
|g 17.3.2.
|t Multimodal Functions --
|g 17.3.3.
|t FA Variants --
|t Exercises --
|g pt. III
|t APPLICATIONS --
|g 18.
|t Multiobjective Optimization --
|g 18.1.
|t Pareto Optimality --
|g 18.2.
|t Weighted Sum Method --
|g 18.3.
|t Utility Method --
|g 18.4.
|t Metaheuristic Search --
|g 18.5.
|t Other Algorithms --
|t Exercises --
|g 19.
|t Engineering Applications --
|g 19.1.
|t Spring Design --
|g 19.2.
|t Pressure Vessel --
|g 19.3.
|t Shape Optimization --
|g 19.4.
|t Optimization of Eigenvalues and Frequencies --
|g 19.5.
|t Inverse Finite Element Analysis --
|t Exercises --
|t Appendices --
|g Appendix
|t A Test Problems in Optimization --
|g Appendix B
|t Matlab® Programs --
|g B.1.
|t Genetic Algorithms --
|g B.2.
|t Simulated Annealing --
|g B.3.
|t Particle Swarm Optimization --
|g B.4.
|t Harmony Search --
|g B.5.
|t Firefly Algorithm --
|g B.6.
|t Large Sparse Linear Systems --
|g B.7.
|t Nonlinear Optimization --
|g B.7.1.
|t Spring Design --
|g B.7.2.
|t Pressure Vessel --
|g Appendix C
|t Glossary --
|g Appendix D
|t Problem Solutions.
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 14596715
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL565130
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10419375
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 334254
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 270777
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3234014
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3325090
|
938 |
|
|
|a Internet Archive
|b INAR
|n engineeringoptim0000yang
|
994 |
|
|
|a 92
|b IZTAP
|