Cargando…

Tensors and their applications /

About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Islam, Nazrul
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : New Age International (P) Ltd., Publishers, ©2006.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn646815198
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 091006s2006 ii o 001 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d N$T  |d OCLCQ  |d IDEBK  |d OCLCQ  |d FVL  |d OCLCQ  |d KUT  |d OCLCF  |d EBLCP  |d DEBSZ  |d VZF  |d YDXCP  |d OCLCQ  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 369191008  |a 476264150  |a 697516362  |a 722730436  |a 728023250  |a 741249316  |a 815773632  |a 961635146  |a 962696084 
020 |a 8122427006  |q (electronic bk.) 
020 |a 9788122427004  |q (electronic bk.) 
020 |a 1282074350 
020 |a 9781282074354 
020 |z 9788122418385 
020 |z 9788122427004 
029 1 |a AU@  |b 000044594537 
029 1 |a AU@  |b 000050983886 
029 1 |a AU@  |b 000053028673 
029 1 |a DEBBG  |b BV044134507 
029 1 |a DEBSZ  |b 39624498X 
029 1 |a NZ1  |b 13519301 
029 1 |a AU@  |b 000060066630 
035 |a (OCoLC)646815198  |z (OCoLC)369191008  |z (OCoLC)476264150  |z (OCoLC)697516362  |z (OCoLC)722730436  |z (OCoLC)728023250  |z (OCoLC)741249316  |z (OCoLC)815773632  |z (OCoLC)961635146  |z (OCoLC)962696084 
050 4 |a QA200  |b .I85 2006eb 
072 7 |a MAT  |x 002050  |2 bisacsh 
072 7 |a YWS  |2 bicssc 
082 0 4 |a 512.57  |2 22 
049 |a UAMI 
100 1 |a Islam, Nazrul. 
245 1 0 |a Tensors and their applications /  |c Nazrul Islam. 
260 |a New Delhi :  |b New Age International (P) Ltd., Publishers,  |c ©2006. 
300 |a 1 online resource (xv, 245 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Chapter 1: Preliminaries -- 1.1. n-Dimensional Space -- 1.2. Superscript and Subscript -- 1.3. The Einstein's Summation Convention -- 1.4. Dummy Index -- 1.5. Free Index -- 1.6. Kronecker Delta -- Exercises -- Chapter 2: Tensor Algebra -- 2.1. Introduction -- 2.2. Transformation of Coordinates -- 2.3. Covariant and Contravariant Vectors (Tensor of Rank One) -- 2.4. Contravariant Tensor of Rank Two -- 2.5. Covariant Tensor of Rank Two -- 2.6. Mixed Tensor of Rank Two -- 2.7. Tensor of Higher Order -- 2.8. Scalar or Invariant -- 2.9. Addition and Subtraction of Tensors -- 2.10. Multiplication of Tensors (Outer Product of Tensor) -- 2.11. Contraction of a Tensor -- 2.12. Inner Product of Two Tensors -- 2.13. Symmetric Tensors -- 2.14. Skew-Symmetric Tensor -- 2.15. Quotient Law -- 2.16. Conjugate (or Reciprocal) Symmetric Tensor -- 2.17. Relative Tensor -- Miscellaneous Examples -- Exercises -- Chapter 3: Metric Tensor and Riemannian Metric -- 3.1. The Metric Tensor -- 3.2. Conjugate Metric Tensor: (Contravariant Tensor) -- 3.3. Length of a Curve -- 3.4. Associated Tensor -- 3.5. Magnitude of Vector -- 3.6. Scalar Product of Two Vectors -- 3.7. Angle Between Two Vectors -- 3.8. Angle Between Two Coordinate Curves -- 3.9. Hypersurface -- 3.10. Angle Between Two Coordinate Hyper surface -- 3.11. n-Ply Orthogonal System of Hypersurfaces -- 3.12. Congruence of Curves -- 3.13. Orthogonal Ennuple -- Miscellaneous Examples -- Exercises -- Chapter 4: Christoffel's Symbols and Covariant Differentiation -- 4.1. Christoffel's Symbols -- 4.2. Transformation of Christoffel's Symbols -- 4.3. Covariant Differentiation of a Covariant Vector -- 4.4. Covariant Differentiation of a Contravariant Vector -- 4.5. Covariant Differentiation of Tensors -- 4.6. Ricci's Theorem -- 4.7. Gradient, Divergence and Curl -- 4.8. The Laplacian Operator -- Exercises -- Chapter 5: Riemann-Christoffel Tensor -- 5.1. Riemann-Christoffel Tensor -- 5.2. Ricci Tensor -- 5.3. Covariant Riemann-Christoffel Tensor -- 5.4. Properties of Riemann-Christoffel Tensors of First Kind R [subscript]ijkl -- 5.5. Bianchi Identity -- 5.6. Einstein Tensor -- 5.7. Riemann Curvature of a Vn -- 5.8. Formula for Riemannian Curvature in the Terms of Covariant curvature Tensor of Vn -- 5.9. Schur's Theorem -- 5.10. Mean Curvature -- 5.11. Ricci Principal Directions -- 5.12. Einstein Space -- 5.13. Weyl Tensor or Projective Curvature Tensor -- Exercises -- Chapter 6: The e-Systems and the Generalized Krönecker Deltas -- 6.1. Completely Symmetric -- 6.2. Completely Skew-Symmetric -- 6.3. e-System -- 6.4. Generalised Krönecker Delta -- 6.5. Contraction of ä i jk [over] áǎa -- Exercises -- Chapter 7: Geometry -- 7.1. Length of Arc -- 7.2. Curvilinear Coordinates in E₃ -- 7.3. Reciprocal Base Systems -- 7.4. On the Meaning of Covariant Derivatives -- 7.5. Intrinsic Differentiation -- 7.6. Parallel Vector Fields -- 7.7. Geometry of space curves -- 7.8. Serret-Frenet formulae -- 7.9. Equations of a straight line -- Exercises -- Chapter 8: Analytical mechanics -- Chapter 9: Curvature of a curve, geodesic -- Chapter 10: Parallelism of vectors -- Chapter 11: Ricci-s coefficients of rotation and congruence -- Chapter 12: Hypersurfaces. 
520 |a About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplines of science and engineering, in a lucid manner. The text has been explained section wise, every concept has been narrated in the form of definition, examples and questions related to the concept taught. The overall package of the book is highly useful and interesting for the people associated with the field. Contents: Preliminaries Tensor Algebra Metric Tensor and Riemannian Metric Christoffel's Symbols and Covariant Differentiation Riemann-Christoffel Tensor The e-Systems and the Generalized Krönecker Deltas Geometry Analytical Mechanics Curvature of a Curve, Geodesic Parallelism of Vectors Ricci's Coefficients of Rotation and Congruence Hyper Surfaces. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Tensor algebra. 
650 6 |a Algèbre tensorielle. 
650 7 |a MATHEMATICS  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a Tensor algebra  |2 fast 
776 0 8 |i Print version:  |a Islam, Nazrul, 1941-  |t Tensors and their applications.  |d [New Delhi] : New Age International, ©2006  |z 8122418384  |z 9788122418385  |w (OCoLC)173807231 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=424100  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL424100 
938 |a ebrary  |b EBRY  |n ebr10318742 
938 |a EBSCOhost  |b EBSC  |n 272103 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 207435 
938 |a YBP Library Services  |b YANK  |n 3006188 
994 |a 92  |b IZTAP