Cargando…

Local analytic geometry /

This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: algebraic treatment of several complex variables; geometric approach to algebraic geometry via analytic sets; survey of local algebra; and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Abhyankar, Shreeram Shankar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2001.
Colección:Pure and applied mathematics (Academic Press) ; 14.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn646775662
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 010409r20011964si a ob 001 0 eng d
010 |z  2001266296 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d N$T  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCO  |d OCLCQ  |d STF  |d OCLCQ  |d COO  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d LEAUB  |d UKCRE  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 268956853  |a 646768272  |a 764499092  |a 815754739  |a 961541640  |a 962594696  |a 988407026  |a 992111231  |a 1037709985  |a 1038560824  |a 1045473521  |a 1055375530  |a 1065098248  |a 1081200516  |a 1086408501  |a 1153465359 
020 |a 9789812810342  |q (electronic bk.) 
020 |a 981281034X  |q (electronic bk.) 
020 |a 1281951854 
020 |a 9781281951854 
020 |a 0123745640 
020 |a 9780123745644 
020 |z 981024505X 
020 |z 9780123745644 
020 |z 9789810245054 
029 1 |a AU@  |b 000049162862 
029 1 |a AU@  |b 000051379158 
029 1 |a DEBBG  |b BV043075635 
029 1 |a DEBBG  |b BV044179573 
029 1 |a DEBSZ  |b 405248768 
029 1 |a DEBSZ  |b 422097233 
029 1 |a NZ1  |b 13857954 
035 |a (OCoLC)646775662  |z (OCoLC)268956853  |z (OCoLC)646768272  |z (OCoLC)764499092  |z (OCoLC)815754739  |z (OCoLC)961541640  |z (OCoLC)962594696  |z (OCoLC)988407026  |z (OCoLC)992111231  |z (OCoLC)1037709985  |z (OCoLC)1038560824  |z (OCoLC)1045473521  |z (OCoLC)1055375530  |z (OCoLC)1065098248  |z (OCoLC)1081200516  |z (OCoLC)1086408501  |z (OCoLC)1153465359 
050 4 |a QA551  |b .A24 2001eb 
072 7 |a MAT  |x 012020  |2 bisacsh 
072 7 |a PBMS  |2 bicssc 
082 0 4 |a 516.3  |2 21 
049 |a UAMI 
100 1 |a Abhyankar, Shreeram Shankar. 
245 1 0 |a Local analytic geometry /  |c Shreeram Shankar Abhyankar. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xv, 488 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Pure and applied mathematics; a series of monographs and textbooks ;  |v 14 
504 |a Includes bibliographical references (pages 471-474) and indexes. 
588 0 |a Print version record. 
520 |a This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: algebraic treatment of several complex variables; geometric approach to algebraic geometry via analytic sets; survey of local algebra; and survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied. In the transition from punctual to local, ie. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively. 
505 0 |a Ch. I. Elementary Theory in Cn. 1. Notation and terminology. 2. Convergent power series. 3. Laurent series. 4. Cauchy theory. 5. Convexity in Rn. 6. Laurent expansion in Cn. 7. Domains of holomorphy. 8. A theorem of Radd. 9. Comments on totally disconnected fields -- ch. II. Weierstrass preparation theorem. 10. Weierstrass preparation theorem. Identity theorem. Finite ideal bases and unique factorization in power series rings. Implicit function theorem. 11. Continuity of roots and open map theorem. 12. Hensel's Lemma. Continuity of algebroid functions. 13. Complex Weierstrass preparation theorem. 14. Riemann extension theorem and connectivity of algebroid hypersurfaces. 15. Oka coherence. 16. Cartan module bases -- ch. III. Review from local algebra. 17. Depth, height, and dimension. Completions. Direct sums. Resultants and discriminants. 18. Quotient rings. 19. Integral dependence and finite generation. 20. Henselian rings. 21. Order and rank in local rings. Regular local rings. 22. Another proof that a formal power series rings is noetherian -- ch. IV. Parameters in power series rings. 23. Parameters for ideals. 24. Perfect fields. 25. Regularity of quotient rings. 26. Translates of ideals. 27. Dimension of an intersection. 28. Algebraic Lemmas on algebroid functions -- ch. V. Analytic sets. 29. The language of germs. 30. Decomposition of an analytic set germ. 31. Riickert-Weierstrass parametrization of an irreducible analytic set germ. 32. Riickert-Weierstrass parametrization of an irreducible analytic set germ (summary). 33. Local properties of analytic sets. 34. Connectivity properties of complex analytic sets. 35. Parametrization of a pure dimensional analytic set. 36. Normal points of complex analytic sets. Remarks on algebraic varieties. 37. Remmert-Stein-Thullen theorem on essential singularities of complex analytic sets. Theorem of Chow. 38. Topological dimension. 39. Remarks on the fundamental group -- ch. VI. Language of sheaves. 40. Inductive systems and presheaves. 41. Sheaves. 42. Coherent sheaves -- ch. VII. Analytic spaces. 43. Definitions. 44. Recapitulation of properties of analytic spaces. 45. Invariance of order and rank. 46. Bimeromorphic maps and normalizations. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry, Analytic. 
650 0 |a Functional analysis. 
650 6 |a Géométrie analytique. 
650 6 |a Analyse fonctionnelle. 
650 7 |a MATHEMATICS  |x Geometry  |x Analytic.  |2 bisacsh 
650 7 |a Functional analysis  |2 fast 
650 7 |a Geometry, Analytic  |2 fast 
758 |i has work:  |a Local analytic geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG4pgYPvt7Ckx4q7YyY4G3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Abhyankar, Shreeram Shankar.  |t Local analytic geometry.  |d Singapore ; River Edge, NJ : World Scientific, ©2001  |w (DLC) 2001266296 
830 0 |a Pure and applied mathematics (Academic Press) ;  |v 14. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681627  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685542 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1681627 
938 |a ebrary  |b EBRY  |n ebr10255489 
938 |a EBSCOhost  |b EBSC  |n 235879 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 195185 
994 |a 92  |b IZTAP