Cargando…

Nonlinear diffusion equations /

Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biolog...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wu, Zhuoqun
Formato: Electrónico eBook
Idioma:Inglés
Chino
Publicado: River Edge, N.J. : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn646768325
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 020205s2001 nju ob 000 0 eng d
010 |z  2002265584 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d N$T  |d YDXCP  |d UBY  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCO  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d REC  |d VT2  |d OCLCQ  |d WYU  |d YOU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
019 |a 261134669  |a 505147551  |a 764499383  |a 815754649  |a 961529408  |a 962725449  |a 1259139103 
020 |a 9789812799791  |q (electronic bk.) 
020 |a 9812799796  |q (electronic bk.) 
020 |a 1281951358 
020 |a 9781281951359 
020 |z 9789810247188 
020 |z 9810247184  |q (acid-free paper) 
020 |a 9786611951351 
020 |a 6611951350 
029 1 |a AU@  |b 000049162993 
029 1 |a AU@  |b 000051398755 
029 1 |a DEBBG  |b BV043152768 
029 1 |a DEBBG  |b BV044179602 
029 1 |a DEBSZ  |b 40524889X 
029 1 |a DEBSZ  |b 422098183 
029 1 |a NZ1  |b 13857977 
035 |a (OCoLC)646768325  |z (OCoLC)261134669  |z (OCoLC)505147551  |z (OCoLC)764499383  |z (OCoLC)815754649  |z (OCoLC)961529408  |z (OCoLC)962725449  |z (OCoLC)1259139103 
041 1 |a eng  |h chi 
050 4 |a QA372  |b .N653 2001eb 
072 7 |a MAT  |x 007010  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
082 0 4 |a 515/.352  |2 21 
049 |a UAMI 
245 0 0 |a Nonlinear diffusion equations /  |c Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li. 
260 |a River Edge, N.J. :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xvii, 502 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pp479-502). 
588 0 |a Print version record. 
520 |a Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which enrich the theory of partial differential equations. This book provides a comprehensive presentation of the basic problems, main results and typical methods for nonlinear diffusion equations with degeneracy. Some results for equations with singularity are touched upon. 
505 0 |a Ch. 1. Newtonian filtration equations. 1.1. Introduction. 1.2. Existence and uniqueness of solutions: One dimensional case. 1.3. Existence and uniqueness of solutions: Higher dimensional case. 1.4. Regularity of solutions: One Dimensional case. 1.5. Regularity of solutions: Higher dimensional case. 1.6. Properties of the free boundary: One dimensional case. 1.7. Properties of the free boundary: Higher dimensional case. 1.8. Initial trace of solutions. 1.9. Other problems -- ch. 2. Non-Newtonian filtration equations. 2.1. Introduction. Preliminary knowledge. 2.2. Existence of solutions. 2.3. Harnack inequality and the initial trace of solutions. 2.4. Regularity of solutions. 2.5. Uniqueness of solutions. 2.6. Properties of the free boundary. 2.7. Other problems -- ch. 3. General quasilinear equations of second order. 3.1. Introduction. 3.2. Weakly degenerate equations in one dimension. 3.3. Weakly Degenerate equations in higher dimension. 3.4. Strongly degenerate equations in one dimension. 3.5. Degenerate equations in higher dimension without terms of lower order. 3.6. General strongly degenerate equations in higher dimension -- ch. 4. Nonlinear diffusion equations of higher order. 4.1. Introduction. 4.2. Similarity solutions of a fourth order equation. 4.3. Equations with double-degeneracy. 4.4. Cahn-Hilliard equation with constant mobility. 4.5. Cahn-Hilliard equations with positive concentration dependent mobility. 4.6. Thin film equation. 4.7. Cahn-Hilliard equation with degenerate mobility. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Burgers equation. 
650 0 |a Heat equation. 
650 6 |a Équation de Burgers. 
650 6 |a Équation de la chaleur. 
650 7 |a MATHEMATICS  |x Differential Equations  |x Ordinary.  |2 bisacsh 
650 7 |a Burgers equation  |2 fast 
650 7 |a Heat equation  |2 fast 
700 1 |a Wu, Zhuoqun. 
758 |i has work:  |a Nonlinear diffusion equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGc4JYPcg7VbK4RGmjTBmq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Nonlinear diffusion equations.  |d River Edge, N.J. : World Scientific, ©2001  |w (DLC) 2002265584 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681656  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685492 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681656 
938 |a ebrary  |b EBRY  |n ebr10255523 
938 |a EBSCOhost  |b EBSC  |n 235784 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 195135 
938 |a YBP Library Services  |b YANK  |n 2889337 
994 |a 92  |b IZTAP