Transforms and applications handbook /
Highlighting the use of transforms and their properties, this title offers an introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then details different transforms, including lapped, Mellin, wavelet, and Hartley varieties.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton :
CRC Press,
©2010.
|
Edición: | 3rd ed. |
Colección: | Electrical engineering handbook series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Signals and systems / Alexander D. Poularikas
- Fourier transforms / Kenneth B. Howell
- Sine and cosine transforms / Pat Yip
- Hartley transform / Kraig J. Olejniczak
- Laplace transforms / Alexander D. Poularikas and Samuel Seely
- Z-transform / Alexander D. Poularikas
- Hilbert transforms / Stefan L. Hahn
- Radon and Abel transforms / Stanley R. Deans
- Hankel transform / Robert Piessens
- Wavelet transform / Yulong Sheng
- Finite Hankel transforms, Legendre transforms, Jacobi and Gegenbauer transforms, and Laguerre and Hermite transforms / Lokenath Debnath
- Mellin transform / Jacqueline Bertrand, Pierre Bertrand, and Jean-Phillipe Ovarlez
- Mixed time-frequency signal transformations / G. Fay Boudreaux-Bartels
- Fractional fourier transform / Haldun M. Ozaktas, M. Alper Kutay, and Çağatay Candan
- Lapped transforms / Ricardo L. de Queiroz
- Zak transform / Mark E. Oxley and Bruce W. Suter
- Discrete time and discrete fourier transforms / Alexander D. Poularikas
- Discrete Chirp-Fourier transform / Xiang-Gen Xia
- Multidimensional discrete unitary transforms / Artyom M. Grigoryan
- Empirical mode decomposition and the Hilbert-Huang transform / Albert Ayenu-Prah, Nii Attoh-Okine, and Norden E. Huang
- Appendices : A. Functions of a complex variable
- B. Series and summations
- C. Definite integrals
- D. Matrices and determinants
- E. Vector analysis
- F. Algebra formulas and coordinate systems.