Cargando…

Associative functions : triangular norms and copulas /

The functional equation of associativity is the topic of Abel's first contribution to Crelle's Journal. Seventy years later, it was featured as the second part of Hilbert's Fifth Problem, and it was solved under successively weaker hypotheses by Brouwer (1909), Cartan (1930) and Aczel...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Alsina, Claudi
Otros Autores: Schweizer, B. (Berthold), Frank, Maurice J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2006.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn614464270
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 061024s2006 si a ob 001 0 eng d
010 |z  2006284938 
040 |a CaPaEBR  |b eng  |e pn  |c ADU  |d E7B  |d OCLCQ  |d DKDLA  |d OCLCQ  |d OCLCO  |d MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AZK  |d MOR  |d PIFBR  |d MERUC  |d OCLCQ  |d U3W  |d OCLCF  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d UKCRE  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 277199897  |a 474661706  |a 474713744  |a 647684740  |a 879025280  |a 961531236  |a 962585524  |a 988534654  |a 992026358  |a 1037727908  |a 1038666795  |a 1045478098  |a 1055357022  |a 1062928844  |a 1081218201  |a 1153510034  |a 1162381108  |a 1228578797  |a 1241798193  |a 1290093381  |a 1300619727 
020 |a 9812566716 
020 |a 9789812566713 
020 |a 9789812774200 
020 |a 9812774203 
020 |z 9812566716 
020 |a 1281919349 
020 |a 9781281919342 
020 |a 9786611919344 
020 |a 6611919341 
024 3 |z 9789812566713 
029 1 |a AU@  |b 000051349054 
029 1 |a DEBBG  |b BV044179451 
029 1 |a DEBSZ  |b 405248105 
029 1 |a DEBSZ  |b 445554770 
029 1 |a NZ1  |b 12808173 
035 |a (OCoLC)614464270  |z (OCoLC)277199897  |z (OCoLC)474661706  |z (OCoLC)474713744  |z (OCoLC)647684740  |z (OCoLC)879025280  |z (OCoLC)961531236  |z (OCoLC)962585524  |z (OCoLC)988534654  |z (OCoLC)992026358  |z (OCoLC)1037727908  |z (OCoLC)1038666795  |z (OCoLC)1045478098  |z (OCoLC)1055357022  |z (OCoLC)1062928844  |z (OCoLC)1081218201  |z (OCoLC)1153510034  |z (OCoLC)1162381108  |z (OCoLC)1228578797  |z (OCoLC)1241798193  |z (OCoLC)1290093381  |z (OCoLC)1300619727 
050 4 |a QA431  |b .A52 2006eb 
082 0 4 |a 515/.7  |2 22 
049 |a UAMI 
100 1 |a Alsina, Claudi. 
245 1 0 |a Associative functions :  |b triangular norms and copulas /  |c Claudi Alsina, Maurice J. Frank, Berthold Schweizer. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2006. 
300 |a 1 online resource (xiv, 237 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references (pages 223-234) and index. 
588 0 |a Print version record. 
520 |a The functional equation of associativity is the topic of Abel's first contribution to Crelle's Journal. Seventy years later, it was featured as the second part of Hilbert's Fifth Problem, and it was solved under successively weaker hypotheses by Brouwer (1909), Cartan (1930) and Aczel (1949). In 1958, B Schweizer and A Sklar showed that the "triangular norms" introduced by Menger in his definition of a probabilistic metric space should be associative; and in their book Probabilistic Metric Spaces, they presented the basic properties of such triangular norms and the closely related copulas. Si. 
505 0 |a Preface -- Special symbols -- 1. Introduction. 1.1. Historical notes. 1.2. Preliminaries. 1.3. t-norms and s-norms. 1.4. Copulas -- 2. Representation theorems for associative functions. 2.1. Continuous, Archimedean t-norms. 2.2. Additive and multiplicative generators. 2.3. Extension to arbitrary closed intervals. 2.4. Continuous, non-Archimedean t-norms. 2.5. Non-continuous t-norms. 2.6. Families of t-norms. 2.7. Other representation theorems. 2.8. Related functional equations -- 3. Functional equations involving t-norms. 3.1. Simultaneous associativity. 3.2. n-duality. 3.3. Simple characterizations of Min. 3.4. Homogeneity. 3.5. Distributivity. 3.6. Conical t-norms. 3.7. Rational Archimedean t-norms. 3.8. Extension and sets of uniqueness -- 4. Inequalities involving t-norms. 4.1. Notions of concavity and convexity. 4.2. The dominance relation. 4.3. Uniformly close associative functions. 4.4. Serial iterates and n-copulas. 4.5. Positivity. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Functional equations. 
650 0 |a Associative law (Mathematics) 
650 0 |a Mathematical analysis. 
650 0 |a Functional equations  |x Study and teaching  |v Textbooks. 
650 0 |a Associative law (Mathematics)  |x Study and teaching  |v Textbooks. 
650 0 |a Mathematical analysis  |x Study and teaching  |v Textbooks. 
650 6 |a Équations fonctionnelles. 
650 6 |a Associativité (Mathématiques) 
650 6 |a Analyse mathématique. 
650 7 |a Associative law (Mathematics)  |2 fast 
650 7 |a Functional equations  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Mathematical analysis  |x Study and teaching  |2 fast 
655 7 |a Textbooks  |2 fast 
700 1 |a Schweizer, B.  |q (Berthold)  |1 https://id.oclc.org/worldcat/entity/E39PCjGhwWqFBXTxXXmfmfQdHC 
700 1 |a Frank, Maurice J. 
776 0 8 |i Print version:  |a Alsina, Claudi.  |t Associative functions.  |d Singapore ; Hackensack, NJ : World Scientific, ©2006  |w (DLC) 2006284938 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681474  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681474 
938 |a ebrary  |b EBRY  |n ebr10201442 
994 |a 92  |b IZTAP