Cargando…

Relative index theory, determinants and torsion for open manifolds /

For closed manifolds, there is a highly elaborated theory of number-valued invariants, attached to the underlying manifold, structures and differential operators. On open manifolds, nearly all of this fails, with the exception of some special classes. The goal of this monograph is to establish for o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Eichhorn, Jürgen
Autor Corporativo: World Scientific (Firm)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn613678168
003 OCoLC
005 20240329122006.0
006 m o d
007 cr buu|||uu|||
008 100512s2009 si ob 001 0 eng d
040 |a LLB  |b eng  |e pn  |c LLB  |d UPM  |d YDXCP  |d OSU  |d N$T  |d EBLCP  |d IDEBK  |d E7B  |d OCLCQ  |d FVL  |d OCLCQ  |d DEBSZ  |d P4I  |d OCLCQ  |d OCLCO  |d MERUC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d MOR  |d ZCU  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d CRU  |d ICG  |d OCLCQ  |d INT  |d VT2  |d AU@  |d OCLCQ  |d JBG  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 501073435  |a 608678899  |a 609971673  |a 647851910  |a 748210111  |a 748594063  |a 816360003  |a 961494294  |a 962684235 
020 |a 9789812771452  |q (electronic bk.) 
020 |a 981277145X  |q (electronic bk.) 
020 |a 1282441671 
020 |a 9781282441675 
020 |z 9812771441 
020 |z 9789812771445 
029 1 |a AU@  |b 000051372779 
029 1 |a DEBBG  |b BV043098408 
029 1 |a DEBBG  |b BV044141345 
029 1 |a DEBSZ  |b 372600654 
029 1 |a DEBSZ  |b 37931259X 
029 1 |a DEBSZ  |b 421915749 
029 1 |a DEBSZ  |b 445567457 
029 1 |a NZ1  |b 13648605 
035 |a (OCoLC)613678168  |z (OCoLC)501073435  |z (OCoLC)608678899  |z (OCoLC)609971673  |z (OCoLC)647851910  |z (OCoLC)748210111  |z (OCoLC)748594063  |z (OCoLC)816360003  |z (OCoLC)961494294  |z (OCoLC)962684235 
050 4 |a QA613.2  |b .E53 2009eb 
072 7 |a MAT  |x 012030  |2 bisacsh 
072 7 |a PBM  |2 bicssc 
082 0 4 |a 516.36  |2 22 
049 |a UAMI 
100 1 |a Eichhorn, Jürgen. 
245 1 0 |a Relative index theory, determinants and torsion for open manifolds /  |c Jürgen Eichhorn. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2009. 
300 |a 1 online resource (x, 341 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 331-337) and index. 
505 0 |a Introduction -- I. Absolute invariants for open manifolds and bundles. 1. Absolute characteristic numbers. 2. Index theorems for open manifolds -- II. Non-linear Sobolev structures. 1. Clifford bundles, generalized Dirac operators and associated Sobolev spaces. 2. Uniform structures of metric spaces. 3. Completed manifolds of maps. 4. Uniform structures of manifolds and Clifford bundles. 5. The classification problem, new (co- )homologies and relative characteristic numbers -- III. The heat kernel of generalized Dirac operators. 1. Invariance properties of the spectrum and the heat kernel. 2. Duhamel's principle, scattering theory and trace class conditions -- IV. Trace class properties. 1. Variation of the Clifford connection. 2. Variation of the Clifford structure. 3. Additional topological perturbations -- V. Relative index theory. 1. Relative index theorems, the spectral shift function and the scattering index -- VI. Relative [symbol]-functions, [symbol]-functions, determinants and torsion. 1. Pairs of asymptotic expansions. 2. Relative [symbol]-functions. 3. Relative determinants and QFT. 4. Relative analytic torsion. 5. Relative [symbol]-invariants. 6. Examples and applications -- VII. Scattering theory for manifolds with injectivity radius zero. 1. Uniform structures defined by decay functions. 2. The injectivity radius and weighted Sobolev spaces. 3. Mapping properties of e[symbol]. 4. Proof of the trace class property -- References -- List of notations -- Index. 
520 |a For closed manifolds, there is a highly elaborated theory of number-valued invariants, attached to the underlying manifold, structures and differential operators. On open manifolds, nearly all of this fails, with the exception of some special classes. The goal of this monograph is to establish for open manifolds, structures and differential operators an applicable theory of number-valued relative invariants. This is of great use in the theory of moduli spaces for nonlinear partial differential equations and mathematical physics. The book is self-contained: in particular, it contains an outline of the necessary tools from nonlinear Sobolev analysis. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Manifolds (Mathematics) 
650 0 |a Index theory (Mathematics) 
650 6 |a Variétés (Mathématiques) 
650 6 |a Théorie de l'index (Mathématiques) 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Index theory (Mathematics)  |2 fast 
650 7 |a Manifolds (Mathematics)  |2 fast 
710 2 |a World Scientific (Firm) 
758 |i has work:  |a Relative index theory, determinants and torsion for open manifolds (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFTJYFqP3Wmtd469vqFCXq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9812771441 
776 1 |z 9789812771445 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=477139  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684314 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL477139 
938 |a ebrary  |b EBRY  |n ebr10361857 
938 |a EBSCOhost  |b EBSC  |n 305154 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 244167 
938 |a YBP Library Services  |b YANK  |n 3161590 
994 |a 92  |b IZTAP