Cargando…

Symplectic elasticity /

Exact analytical solutions in some areas of solid mechanics, in particular problems in the theory of plates, have long been regarded as bottlenecks in the development of elasticity. In contrast to the traditional solution methodologies, such as Timoshenko's approach in the theory of elasticity...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yao, Weian, 1963-
Autor Corporativo: World Scientific (Firm)
Otros Autores: Zhong, Wanxie, Lim, Chee Wah, 1965-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn613658838
003 OCoLC
005 20240329122006.0
006 m o d
007 cr buu|||uu|||
008 100512s2009 si a ob 000 0 eng d
040 |a LLB  |b eng  |e pn  |c LLB  |d E7B  |d OCLCQ  |d IDEBK  |d OCLCQ  |d DEBSZ  |d OCLCO  |d EBLCP  |d MERUC  |d MHW  |d OCLCQ  |d OCLCF  |d OCLCQ  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d LEAUB  |d UKCRE  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 536316768  |a 609853436  |a 647851144  |a 748210084  |a 764530969  |a 816359938  |a 961532609  |a 962600223  |a 988428792  |a 991984355  |a 1037911088  |a 1038678288  |a 1045538301  |a 1058834650  |a 1086520902  |a 1153487113  |a 1162384689  |a 1290088931  |a 1300546290 
020 |a 9789812778727  |q (electronic bk.) 
020 |a 9812778721  |q (electronic bk.) 
020 |a 1282441361 
020 |a 9781282441361 
020 |a 9786612441363 
020 |a 6612441364 
020 |z 9789812778703 
020 |z 9812778705 
029 1 |a AU@  |b 000053267946 
029 1 |a AU@  |b 000058045563 
029 1 |a DEBBG  |b BV044141455 
029 1 |a DEBSZ  |b 372600557 
029 1 |a DEBSZ  |b 379313103 
029 1 |a DEBSZ  |b 445569816 
029 1 |a NZ1  |b 13862749 
035 |a (OCoLC)613658838  |z (OCoLC)536316768  |z (OCoLC)609853436  |z (OCoLC)647851144  |z (OCoLC)748210084  |z (OCoLC)764530969  |z (OCoLC)816359938  |z (OCoLC)961532609  |z (OCoLC)962600223  |z (OCoLC)988428792  |z (OCoLC)991984355  |z (OCoLC)1037911088  |z (OCoLC)1038678288  |z (OCoLC)1045538301  |z (OCoLC)1058834650  |z (OCoLC)1086520902  |z (OCoLC)1153487113  |z (OCoLC)1162384689  |z (OCoLC)1290088931  |z (OCoLC)1300546290 
050 4 |a QA931  |b .Y36 2009eb 
072 7 |a PHD  |2 bicssc 
082 0 4 |a 531.382  |2 22 
049 |a UAMI 
100 1 |a Yao, Weian,  |d 1963-  |1 https://id.oclc.org/worldcat/entity/E39PCjBFjtFbcX6TCtY4bdGDVP 
245 1 0 |a Symplectic elasticity /  |c Weian Yao, Wanxie Zhong, Chee Wah Lim. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2009. 
300 |a 1 online resource (xxi, 292 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
505 0 |a 1. Mathematical preliminaries. 1.1. Linear space. 1.2. Euclidean space. 1.3. Symplectic space. 1.4. Legengre's transformation. 1.5. The Hamiltonian principle and the Hamiltonian canonical equations. 1.6. The Reciprocal theorems -- 2. Fundamental equations of elasticity and variational principle. 2.1. Stress analysis. 2.2. Strain analysis. 2.3. Stress-strain relations. 2.4. The fundamental equations of elasticity. 2.5. The principle of virtual work. 2.6. The principle of minimum total potential energy. 2.7. The principle of minimum total complementary energy. 2.8. The Hellinger-Reissner variational principle with two kinds of variables. 2.9. The Hu-Washizu variational principle with three kinds of variables. 2.10. The principle of superposition and the uniqueness theorem. 2.11. Saint-Venant principle -- 3. The Timoshenko beam theory and its extension. 3.1. The Timoshenko beam theory. 3.2. Derivation of Hamiltonian system. 3.3. The method of separation of variables. 3.4. Reciprocal theorem for work and adjoint symplectic orthogonality. 3.5. Solution for non-homogeneous equations. 3.6. Two-point boundary conditions. 3.7. Static analysis of Timoshenko beam. 3.8. Wave propagation analysis of Timoshenko beam. 3.9. Wave induced resonance -- 4. Plane elasticity in rectangular coordinates. 4.1. The fundamental equations of plane elasticity. 4.2. Hamiltonian system in rectangular domain. 4.3. Separation of variables and transverse Eigen-problems. 4.4. Eigen-solutions of zero Eigenvalue. 4.5. Solutions of Saint-Venant problems for rectangular beam. 4.6. Eigen-solutions of nonzero Eigenvalues. 4.7. Solutions of generalized plane problems in rectangular domain -- 5. Plane anisotropic elasticity problems. 5.1. The fundamental equations of plane anisotropic elasticity problems. 5.2. Symplectic solution methodology for anisotropic elasticity problems. 5.3. Eigen-solutions of zero Eigenvalue. 5.4. Analytical solutions of Saint-Venant problems. 5.5. Eigen-solutions of nonzero Eigenvalues. 5.6. Introduction to Hamiltonian system for generalized plane problems -- 6. Saint-Venant problems for laminated composite plates. 6.1. The fundamental equations. 6.2. Derivation of Hamiltonian system. 6.3. Eigen-solutions of zero Eigenvalue. 6.4. Analytical solutions of Saint-Venant problem -- 7. Solutions for plane elasticity in polar coordinates. 7.1. Plane elasticity equations in polar coordinates. 7.2. Variational principle for a circular sector. 7.3. Hamiltonian system with radial coordinate treated as "Time". 7.4. Eigen-solutions for symmetric deformation in radial Hamiltonian system. 7.5. Eigen-solutions for anti-symmetric deformation in radial Hamiltonian system. 7.6. Hamiltonian system with circumferential coordinate treated as "Time" -- 8. Hamiltonian system for bending of thin plates. 8.1. Small deflection theory for bending of elastic thin plates. 8.2. Analogy between plane elasticity and bending of thin plate. 8.3. Multi-variable variational principles for thin plate bending and plane elasticity. 8.4. Symplectic solution for rectangular plates. 8.5. Plates with two opposite sides simply supported. 8.6. Plates with two opposite sides free. 8.7. Plate with two opposite sides clamped. 8.8. Bending of sectorial plates. 
520 |a Exact analytical solutions in some areas of solid mechanics, in particular problems in the theory of plates, have long been regarded as bottlenecks in the development of elasticity. In contrast to the traditional solution methodologies, such as Timoshenko's approach in the theory of elasticity for which the main technique is the semi-inverse method, this book presents a new approach based on the Hamiltonian principle and the symplectic duality system where solutions are derived in a rational manner in the symplectic space. Dissimilar to the conventional Euclidean space with one kind of variables, the symplectic space with dual variables thus provides a fundamental breakthrough. A unique feature of this symplectic approach is the classical bending problems in solid mechanics now become eigenvalue problems and the symplectic bending deflection solutions are constituted by expansion of eigenvectors. The classical solutions are subsets of the more general symplectic solutions. This book explains the new solution methodology by discussing plane isotropic elasticity, multiple layered plate, anisotropic elasticity, sectorial plate and thin plate bending problems in detail. A number of existing problems without analytical solutions within the framework of classical approaches are solved analytically using this symplectic approach. Symplectic methodologies can be applied not only to problems in elasticity, but also to other solid mechanics problems. In addition, it can also be extended to various engineering mechanics and mathematical physics fields, such as vibration, wave propagation, control theory, electromagnetism and quantum mechanics. 
588 0 |a Print version record. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Elasticity. 
650 0 |a Symplectic spaces. 
650 6 |a Élasticité. 
650 6 |a Espaces symplectiques. 
650 7 |a Elasticity  |2 fast 
650 7 |a Symplectic spaces  |2 fast 
700 1 |a Zhong, Wanxie. 
700 1 |a Lim, Chee Wah,  |d 1965-  |1 https://id.oclc.org/worldcat/entity/E39PCjMfjvx8CKbwBTfKVV8bwK 
710 2 |a World Scientific (Firm) 
758 |i has work:  |a Symplectic elasticity (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYf6bKmTh3cTbmttpHt8C  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9812778705 
776 1 |z 9789812778703 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=477279  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL477279 
938 |a ebrary  |b EBRY  |n ebr10361775 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 244136 
994 |a 92  |b IZTAP