|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn613396809 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr buu|||uu||| |
008 |
100511s2009 si ob 001 0 eng d |
040 |
|
|
|a LLB
|b eng
|e pn
|c LLB
|d N$T
|d EBLCP
|d YDXCP
|d IDEBK
|d OCLCQ
|d DEBSZ
|d NLGGC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AGLDB
|d ZCU
|d MERUC
|d U3W
|d OCLCQ
|d VTS
|d ICG
|d INT
|d VT2
|d AU@
|d OCLCQ
|d JBG
|d WYU
|d OCLCQ
|d STF
|d LEAUB
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 536316600
|a 592756206
|a 796386275
|
020 |
|
|
|a 9789812836915
|q (electronic bk.)
|
020 |
|
|
|a 9812836918
|q (electronic bk.)
|
020 |
|
|
|z 981283690X
|
020 |
|
|
|z 9789812836908
|
029 |
1 |
|
|a AU@
|b 000054173050
|
029 |
1 |
|
|a DEBBG
|b BV043126996
|
029 |
1 |
|
|a DEBBG
|b BV044141399
|
029 |
1 |
|
|a DEBSZ
|b 379312875
|
029 |
1 |
|
|a DEBSZ
|b 42191467X
|
029 |
1 |
|
|a NLGGC
|b 326435298
|
035 |
|
|
|a (OCoLC)613396809
|z (OCoLC)536316600
|z (OCoLC)592756206
|z (OCoLC)796386275
|
050 |
|
4 |
|a QC174.17.F45
|b M39 2009eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.43
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Mazzucchi, Sonia.
|
245 |
1 |
0 |
|a Mathematical Feynman path integrals and their applications /
|c Sonia Mazzucchi.
|
260 |
|
|
|a Singapore ;
|a Hackensack, N.J. :
|b World Scientific Pub. Co.,
|c ©2009.
|
300 |
|
|
|a 1 online resource (viii, 216 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 197-213) and index.
|
505 |
0 |
|
|a 1. Introduction. 1.1. Wiener's and Feynman's integration. 1.2. The Feynman functional. 1.3. Infinite dimensional oscillatory integrals -- 2. Infinite dimensional oscillatory integrals. 2.1. Finite dimensional oscillatory integrals. 2.2. The Parseval type equality. 2.3. Generalized Fresnel integrals. 2.4. Infinite dimensional oscillatory integrals. 2.5. Polynomial phase functions -- 3. Feynman Path Integrals and the Schrödinger equation. 3.1. The anharmonic oscillator with a bounded anharmonic potential. 3.2. Time dependent potentials. 3.3. Phase space Feynman path integrals. 3.4. Magnetic field. 3.5. Quartic potential -- 4. The stationary phase method and the semiclassical limit of quantum mechanics. 4.1. Asymptotic expansions. 4.2. The stationary phase method. Finite dimensional case. 4.3. The stationary phase method. Infinite dimensional case. 4.4. The semiclassical limit of quantum mechanics. 4.5. The trace formula -- 5. Open quantum systems. 5.1. Feynman path integrals and open quantum systems. 5.2. The Feynman-Vernon influence functional. 5.3. The stochastic Schrödinger equation -- 6. Alternative approaches to Feynman path integration. 6.1. Analytic continuation of Wiener integrals. 6.2. The sequential approach. 6.3. White noise calculus. 6.4. Poisson processes. 6.5. Further approaches and results.
|
520 |
|
|
|a Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Feynman integrals.
|
650 |
|
6 |
|a Intégrales de Feynman.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Feynman integrals
|2 fast
|
710 |
2 |
|
|a World Scientific (Firm)
|
758 |
|
|
|i has work:
|a Mathematical Feynman path integrals and their applications (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFPxPPRR4JHWkQg8D8rYvb
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
1 |
|
|z 981283690X
|
776 |
1 |
|
|z 9789812836908
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=477207
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24686164
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL477207
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 305263
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3161699
|
994 |
|
|
|a 92
|b IZTAP
|