Dual sets of envelopes and characteristic regions of quasi-polynomials /
Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves asso...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; Hackensack, N.J. :
World Scientific,
©2009.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Prologue. 1.1. An example. 1.2. Basic definitions
- 2. Envelopes and dual sets. 2.1. Plane curves. 2.2. Envelopes. 2.3. Dual sets of plane curves. 2.4. Notes
- 3. Dual sets of convex-concave functions. 3.1. Quasi-tangent lines. 3.2. Asymptotes. 3.3. Intersections of quasi-tangent lines and vertical lines. 3.4. Distribution maps for dual points. 3.5. Intersections of dual sets of order 0. 3.6. Notes
- 4. Quasi-polynomials. 4.1. [symbol]- and [symbol]-polynomials. 4.2. Characteristic regions. 4.3. Notes
- 5. C\(0, [symbol])-characteristic regions of real polynomials. 5.1. Quadratic polynomials. 5.2. Cubic polynomials. 5.3. Quartic polynomials. 5.4. Quintic polynomials. 5.5. Notes
- 6. C\(0, [symbol])-characteristic regions of real [symbol]-polynomials. 6.1. [symbol]-polynomials involving one power. 6.2. [symbol]-polynomials involving two powers. 6.3. [symbol]-polynomials involving three powers. 6.4. Notes
- 7. C\R-characteristic regions of [symbol]-polynomials. 7.1. [symbol]-polynomials involving one power. 7.2. [symbol]-polynomials involving two powers. 7.3. [symbol]-polynomials involving three powers. 7.4. Notes.