|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn608248516 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
100421s2009 dcua ob 000 0 eng d |
040 |
|
|
|a CUS
|b eng
|e pn
|c CUS
|d E7B
|d OCLCQ
|d OCLCE
|d OCLCQ
|d OCLCA
|d OCLCQ
|d OCLCF
|d EBLCP
|d MHW
|d OCLCQ
|d CUS
|d MERUC
|d COCUF
|d MOR
|d CCO
|d PIFAG
|d ZCU
|d OCLCQ
|d U3W
|d STF
|d WRM
|d NRAMU
|d ICG
|d VT2
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d UWK
|d ADU
|d OCLCQ
|d UKCRE
|d BOL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCL
|
019 |
|
|
|a 762262286
|a 764532899
|a 891552746
|a 961639268
|a 962624870
|a 974973472
|a 975046238
|a 988508768
|a 992039273
|a 1017994353
|a 1037746011
|a 1038696192
|a 1041926590
|a 1045515331
|a 1055342134
|a 1058435219
|a 1081261598
|a 1107367511
|a 1110257984
|a 1113454783
|a 1114477904
|a 1153461431
|a 1202536269
|a 1228595936
|a 1313543763
|a 1354540552
|a 1420103175
|
020 |
|
|
|a 1462371922
|
020 |
|
|
|a 9781462371921
|
020 |
|
|
|a 1452712743
|
020 |
|
|
|a 9781452712741
|
020 |
|
|
|a 9786612842955
|
020 |
|
|
|a 6612842954
|
020 |
|
|
|a 1451872216
|
020 |
|
|
|a 9781451872217
|
020 |
|
|
|a 1282842951
|
020 |
|
|
|a 9781282842953
|
029 |
1 |
|
|a AU@
|b 000053019258
|
029 |
1 |
|
|a DEBBG
|b BV044178507
|
029 |
1 |
|
|a NZ1
|b 13863468
|
029 |
1 |
|
|a AU@
|b 000068459873
|
035 |
|
|
|a (OCoLC)608248516
|z (OCoLC)762262286
|z (OCoLC)764532899
|z (OCoLC)891552746
|z (OCoLC)961639268
|z (OCoLC)962624870
|z (OCoLC)974973472
|z (OCoLC)975046238
|z (OCoLC)988508768
|z (OCoLC)992039273
|z (OCoLC)1017994353
|z (OCoLC)1037746011
|z (OCoLC)1038696192
|z (OCoLC)1041926590
|z (OCoLC)1045515331
|z (OCoLC)1055342134
|z (OCoLC)1058435219
|z (OCoLC)1081261598
|z (OCoLC)1107367511
|z (OCoLC)1110257984
|z (OCoLC)1113454783
|z (OCoLC)1114477904
|z (OCoLC)1153461431
|z (OCoLC)1202536269
|z (OCoLC)1228595936
|z (OCoLC)1313543763
|z (OCoLC)1354540552
|z (OCoLC)1420103175
|
037 |
|
|
|n Title subscribed to via ProQuest Academic Complete
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a HG3810
|
082 |
1 |
4 |
|a 330
|q OCoLC
|2 15/eng/20231120
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chen, Huigang,
|e author.
|
245 |
1 |
0 |
|a Limited information Bayesian Model Averaging for dynamic panels with short time periods /
|c prepared by Huigang Chen, Alin Mirestean, and Charalambos Tsangarides.
|
260 |
|
|
|a [Washington, DC] :
|b International Monetary Fund,
|c ©2009.
|
300 |
|
|
|a 1 online resource (43 pages) :
|b color illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
340 |
|
|
|g polychrome.
|2 rdacc
|0 http://rdaregistry.info/termList/RDAColourContent/1003
|
347 |
|
|
|a text file
|2 rdaft
|0 http://rdaregistry.info/termList/fileType/1002
|
490 |
1 |
|
|a IMF working paper ;
|v WP/09/74
|
504 |
|
|
|a Includes bibliographical references (pages 25-27).
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Bayesian Model Averaging (BMA) provides a coherent mechanism to address the problem of model uncertainty. In this paper we extend the BMA framework to panel data models where the lagged dependent variable as well as endogenous variables appear as regressors. We propose a Limited Information Bayesian Model Averaging (LIBMA) methodology and then test it using simulated data. Simulation results suggest that asymptotically our methodology performs well both in Bayesian model selection and averaging. In particular, LIBMA recovers the data generating process very well, with high posterior inclusion.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
505 |
0 |
|
|a I. Introduction; II. Model Uncertainty in the Bayesian Context; A. Model Selection and Hypothesis Testing; B. Bayesian Model Averaging; C. Choice of Priors; III. Limited Information Bayesian Model Averaging; A.A Dynamic Panel Data Model with Endogenous Regressors; B. Estimation and Moment Conditions; C. The Limited Information Criterion; IV. Monte Carlo Simualtions and Results; A. The Data Generating Process; B. Simulation Results; V. Conclusion; References; Tables; 1. Posterior Probability of the True Model; 2. Posterior Probability Ratio of True Model/Best among the Other Models
|
505 |
8 |
|
|a 3. Probability of Retrieving the True Model4. Model Recovery: Medians and Variances of Posterior Inclusi; 5. Model Recovery: Medians and Variances of Estimated Paramet; 6. Posterior Probability of the True Model (Non-Gaussian Case); 7. Posterior Probability Ratio: True Model/best among the Other Models (Non-Gaussian Case); 8. Probability of Retrieving the True Model (Non-Gaussian Case); 9. Model Recovery: Medians and Variances of Posterior Inclusion Probability for Each Variable (Non-Gaussian Case); 10. Model Recovery: Medians and Variances of Estimated Parameter Values (Non- Gaussian Case)
|
505 |
8 |
|
|a Appendix A Figures1. Posterior Densities for the Probabilities in Table 1; 2. Posterior Densities for the Probabilities in Table 2; 3. Box Plots for Parameters in Table 5; 4. Posterior Densities for the Probabilities in Table 6; 5. Posterior Densities for the Probabilities in Table 7; 6. Box Plots for Parameters in Table 10
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Bayesian statistical decision theory.
|
650 |
|
6 |
|a Théorie de la décision bayésienne.
|
650 |
|
7 |
|a Bayesian statistical decision theory
|2 fast
|
650 |
|
7 |
|a Bayes-Statistik.
|2 stw
|
650 |
|
7 |
|a Panel.
|2 stw
|
650 |
|
7 |
|a Momentenmethode.
|2 stw
|
700 |
1 |
|
|a Mirestean, Alin,
|e author.
|
700 |
1 |
|
|a Tsangarides, Charalambos G.,
|e author.
|
710 |
2 |
|
|a International Monetary Fund.
|b Research Department.
|
758 |
|
|
|i has work:
|a Limited information Bayesian model averaging for dynamic panels with short time periods (Text)
|1 https://id.oclc.org/worldcat/entity/E39PD3J8bdK7P7XCgjHBtpHdw3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Chen, Huigang.
|t Limited information Bayesian Model Averaging for dynamic panels with short time periods.
|d [Washington, DC] : International Monetary Fund (IMF), ©2009
|w (OCoLC)539056651
|
830 |
|
0 |
|a IMF working paper ;
|v WP/09/74.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1608239
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1608239
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10368566
|
994 |
|
|
|a 92
|b IZTAP
|