Cargando…

Steiner tree problems in computer communication networks /

The Steiner tree problem is one of the most important combinatorial optimization problems. It has a long history that can be traced back to the famous mathematician Fermat (1601-1665). This book studies three significant breakthroughs on the Steiner tree problem that were achieved in the 1990s, and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Du, Dingzhu
Otros Autores: Hu, Xiaodong
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn560692519
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 080128s2008 si a ob 001 0 eng d
010 |z  2008299551 
040 |a MERUC  |b eng  |e pn  |c MERUC  |d CCO  |d E7B  |d OCLCQ  |d OSU  |d CDX  |d OCLCQ  |d I9W  |d OCLCF  |d OCLCQ  |d IDEBK  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AZK  |d MOR  |d PIFAG  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d CEF  |d NRAMU  |d ICG  |d INT  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d UKCRE  |d VLY  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 313650727  |a 316263187  |a 646768644  |a 815752225  |a 961537284  |a 962678716  |a 988485087  |a 992012911  |a 1037717214  |a 1038616000  |a 1045467444  |a 1058095345  |a 1153535242  |a 1162278067  |a 1227629423  |a 1290075948  |a 1300646758  |a 1303323581  |a 1303476482 
020 |a 9812791450  |q (ebook) 
020 |a 9789812791450  |q (ebook) 
020 |a 1281933945 
020 |a 9781281933942 
020 |z 9812791442 
020 |z 9789812791443 
020 |a 9786611933944 
020 |a 6611933948 
029 1 |a CDX  |b 9528618 
029 1 |a DEBBG  |b BV044179651 
029 1 |a DEBSZ  |b 424073471 
029 1 |a DEBSZ  |b 445556447 
029 1 |a NZ1  |b 13335517 
035 |a (OCoLC)560692519  |z (OCoLC)313650727  |z (OCoLC)316263187  |z (OCoLC)646768644  |z (OCoLC)815752225  |z (OCoLC)961537284  |z (OCoLC)962678716  |z (OCoLC)988485087  |z (OCoLC)992012911  |z (OCoLC)1037717214  |z (OCoLC)1038616000  |z (OCoLC)1045467444  |z (OCoLC)1058095345  |z (OCoLC)1153535242  |z (OCoLC)1162278067  |z (OCoLC)1227629423  |z (OCoLC)1290075948  |z (OCoLC)1300646758  |z (OCoLC)1303323581  |z (OCoLC)1303476482 
050 4 |a QA166.3  |b .D8 2008eb 
072 7 |a PGK  |2 bicssc 
082 0 4 |a 511.5 22  |2 22 
049 |a UAMI 
100 1 |a Du, Dingzhu. 
245 1 0 |a Steiner tree problems in computer communication networks /  |c Dingzhu Du, Xiaodong Hu. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2008. 
300 |a 1 online resource (xiii, 359 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 337-353) and index. 
588 0 |a Print version record. 
505 0 |a 1. Minimax approach and Steiner ratio. 1.1. Minimax approach. 1.2. Steiner ratio in the Euclidean plane. 1.3. Steiner ratios in other metric spaces. 1.4. Discussions -- 2. k-Steiner ratios and better approximation algorithms. 2.1. k-Steiner ratio. 2.2. Approximations better than minimum spanning tree. 2.3. Discussions -- 3. Geometric partitions and polynomial time approximation schemes. 3.1. Guillotine cut for rectangular partition. 3.2. Portals. 3.3. Banyan and Spanner. 3.4. Discussions -- 4. Grade of service Steiner Tree problem. 4.1. GoSST problem in the Euclidean plane. 4.2. Minimum GoSST problem in graphs. 4.3. Discussions -- 5. Steiner Tree problem for minimal Steiner points. 5.1. In the Euclidean plane. 5.2. In the rectilinear plane. 5.3. In metric spaces. 5.4. Discussions -- 6. Bottleneck Steiner tree problem. 6.1. Complexity study. 6.2. Steinerized minimum spanning tree algorithm. 6.3. 3-restricted Steiner Tree algorithm. 6.4. Discussions -- 7. Steiner k-Tree and k-Path routing problems. 7.1. Problem formulation and complexity study. 7.2. Algorithms for k-Path routing problem. 7.3. Algorithms for k-Tree routing problem. 7.4. Discussions -- 8. Steiner Tree coloring problem. 8.1. Maximum tree coloring. 8.2. Minimum tree coloring. 8.3. Discussions -- 9. Steiner Tree scheduling problem. 9.1. Minimum aggregation time. 9.2. Minimum multicast time problem. 9.3. Discussions -- 10. Survivable Steiner network problem. 10.1. Minimum k-connected Steiner networks. 10.2. Minimum weak two-connected Steiner networks. 10.3. Minimum weak three-edge-connected Steiner networks. 10.4. Discussions. 
520 |a The Steiner tree problem is one of the most important combinatorial optimization problems. It has a long history that can be traced back to the famous mathematician Fermat (1601-1665). This book studies three significant breakthroughs on the Steiner tree problem that were achieved in the 1990s, and some important applications of Steiner tree problems in computer communication networks researched in the past fifteen years. It not only covers some of the most recent developments in Steiner tree problems, but also discusses various combinatorial optimization methods, thus providing a balance between theory and practice. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Steiner systems. 
650 0 |a Computer networks. 
650 2 |a Computer Communication Networks 
650 6 |a Systèmes de Steiner. 
650 6 |a Réseaux d'ordinateurs. 
650 7 |a Computer networks  |2 fast 
650 7 |a Steiner systems  |2 fast 
700 1 |a Hu, Xiaodong. 
758 |i has work:  |a Steiner tree problems in computer communication networks (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGQd8M8VDCjKtvrHmPtrmd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Du, Dingzhu.  |t Steiner tree problems in computer communication networks.  |d Singapore ; Hackensack, NJ : World Scientific, ©2008  |w (DLC) 2008299551 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681725  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 9528618 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681725 
938 |a ebrary  |b EBRY  |n ebr10255725 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 193394 
994 |a 92  |b IZTAP